\chapter{Analytic trigonometry} \section{Sum/difference and double angle identities}
Check your understanding
Answer the questions. \begin{enumerate} \item Answer True or False:
  1. \(\sin(30^\circ +\theta)=0.5+\sin \theta\), because \(\sin(30^\circ)=0.5\)
  2. If \(\cos(x-y)=0\), then we must have \(\cos x=\cos y\)
  3. If \(\sin \theta = 0.3\), then \(\sin(2\theta)=0.6\)
\item What is the sum/difference identity for \(\cos(x+y)\)? \item What is the double angle identity for \(\sin(2x)\)? \item State at least one double angle identity for \(\cos(2x)\) \item How should we split the angles to use sum/difference identities? \[ \begin{array}{ccc} \mbox{i. } 165^\circ & \mbox{ii. } 285^\circ & \mbox{iii. } 195^\circ \end{array} \] \item How should we split the fractions to use sum/difference identities? \[ \begin{array}{ccc} \mbox{i. } \displaystyle \frac{\pi}{12} & \mbox{ii. } \displaystyle \frac{5\pi}{12} & \mbox{iii. }\displaystyle \frac{11\pi}{12} \end{array} \] \item Answer True or False:
  1. If we know \(\sin x\), then we can find \(\sin(2x)\)
  2. If we know \(\cos x\), then we can find \(\cos(2x)\)
  3. If we know both \(\sin x\) and \(\cos x\), then we can find \(\sin(2x)\)
  4. If we know \(\sin x\), then we can find \(\cos(2x)\)
\end{enumerate}
Back to Unit 5.3