\chapter{Analytic trigonometry}
\section{Sum/difference and double angle identities}
Answer the questions.
\begin{enumerate}
\item Answer True or False:
-
\(\sin(30^\circ +\theta)=0.5+\sin \theta\), because \(\sin(30^\circ)=0.5\)
-
If \(\cos(x-y)=0\), then we must have \(\cos x=\cos y\)
-
If \(\sin \theta = 0.3\), then \(\sin(2\theta)=0.6\)
\item
What is the sum/difference identity for \(\cos(x+y)\)?
\item
What is the double angle identity for \(\sin(2x)\)?
\item
State at least one double angle identity for \(\cos(2x)\)
\item
How should we split the angles to use sum/difference identities?
\[
\begin{array}{ccc}
\mbox{i. } 165^\circ & \mbox{ii. } 285^\circ & \mbox{iii. } 195^\circ
\end{array}
\]
\item
How should we split the fractions to use sum/difference identities?
\[
\begin{array}{ccc}
\mbox{i. } \displaystyle \frac{\pi}{12} & \mbox{ii. } \displaystyle \frac{5\pi}{12} &
\mbox{iii. }\displaystyle \frac{11\pi}{12}
\end{array}
\]
\item
Answer True or False:
-
If we know \(\sin x\), then we can find \(\sin(2x)\)
-
If we know \(\cos x\), then we can find \(\cos(2x)\)
-
If we know both \(\sin x\) and \(\cos x\), then we can find \(\sin(2x)\)
-
If we know \(\sin x\), then we can find \(\cos(2x)\)
\end{enumerate}