\chapter{Exponentials and logarithms} \section{Properties of logarithms and logarithmic functions}
Check your understanding
Answer the questions. \begin{enumerate} \item Suppose you want to simplify \[\ln \left(xy^2\right).\] Which of the following is the right answer? \begin{enumerate} \item \(2\ln(xy)\) \item \(\ln x + 2 \ln y\) \end{enumerate} \item We want to condense the expression into a single quantity: \[\log (x+2) -\log (x-2).\] Which of the following is the right answer? \begin{enumerate} \item \(\displaystyle \log \left(\frac{x+2}{x-2}\right)\) \item \( \displaystyle \frac{\log(x+2)}{\log(x-2)}\) \end{enumerate} \item Answer True or False: \begin{enumerate} \item \(\log x \) can never be zero. \item \(\ln x \) can never be a whole number. \item \(\log_3 1=3\) \item \(\log_4 2 =2\) \item \(\log_3 0 =1\) \end{enumerate} \item Expand \(\displaystyle \ln\left(\frac{x}{yz}\right)\). Which of the following is the right answer? \begin{enumerate} \item \(\ln x - \ln y - \ln z\) \item \(\ln x -\ln y +\ln z\) \end{enumerate} \end{enumerate}
Back to Unit 3.3