Peter Bierhorst

Department of Mathematics plbierho@uno.edu

March 19, 2024

Announcement of the 2022 Nobel Prize in Physics

4 OCTOBER 2022

Scientific Background on the Nobel Prize in Physics 2022

"FOR EXPERIMENTS WITH ENTANGLED PHOTONS, ESTABLISHING THE VIOLATION OF BELL INEQUALITIES AND PIONEERING QUANTUM INFORMATION SCIENCE"

The Nobel Committee for Physics

One of 34 co-authors of one of 41 cited papers...

- B. Hensen, H. Bernien, A.E. Dréau, A. Reiserer, N. Kalb, M.S Blok, J. Ruitenberg, R.F.L. Vermeulen, R.N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M.W. Mitchell, M. Markham D.J. Twitchen, D. Elkouss, S. Wehner, T.H. Taminiau and R. Hanson, *Nature* 526, 682 (2015).
- 36. M. Giustina, M. A. M. Versteegh, S. Wengerowsky, J. Handsteiner, A. Hochrainer, K. Phelan, F. Steinlechner, J. Kofler, J.-Å. Larsson, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, J. Beyer, T. Gerrits, A. E. Lita, L.K. Shalm, S. W. Nam, T. Scheidl, R. Ursin, B. Wittmann and A. Zeilinger Phys. Rev. Lett. 115, 250401 (2015).
- 37. LK, Shahm, E. Meyer-Scott, B.G. Christensen, P. Bierhorst, M.A. Wayne, M.J. Stevens, T. Gerrits, S. Glancy, D.R. Hamel, M.S. Allman, K.J. Coakley, S.D. Dyer, C. Hodge, A.E. Lita, V.B. Verma, C. Lambrocco, E. Tortorici, A.L. Migdall, Y. Khang, D.R. Kumor, W.H. Farr, F. Marslil, M.D. Shaw, J.A. Stern, C. Abellán, W. Amaya, V. Pruneri, T. Jennevelen, M.W. Mitchell, PC, Kwiat, J.C. Bienfang, R.P. Mirin, E. Knill and S. W. Nam, *Phys. Rev. Lett.* **11**, 520402 (205).
- W. Rosenfeld, D. Burchardt, R. Garthoff, K. Redeker, N. Ortegel, M. Rau and H. Weinfurter, *Phys. Rev. Lett.* 119, 010402 (2017).

17 (18)

One of 34 co-authors of one of 41 cited papers...

- B. Hensen, H. Bernien, A.E. Dréau, A. Reiserer, N. Kalb, M.S Blok, J. Ruitenberg, R.F.L. Vermeulen, R.N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M.W. Mitchell, M. Markham D.J. Twitchen, D. Elkouss, S. Wehner, T.H. Taminiau and R. Hanson, *Nature* 526, 682 (2015).
- 36. M. Giustina, M. A. M. Versteegh, S. Wengerowsky, J. Handsteiner, A. Hochrainer, K. Phelan, F. Steinlechner, J. Kofler, J.-Å. Larsson, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, J. Beyer, T. Gerrits, A. E. Lita, L.K. Shalm, S. W. Nam, T. Scheidl, R. Ursin, B. Wittmann and A. Zeilinger Phys. Rev. Lett. 115, 250401 (2015).
- 37. LK, Shahm, E. Meyer-Scott, B.G. Christensen, P. Bierhorst, M.A. Wayne, M.J. Stevens, T. Gerrits, S. Glancy, D.R. Hamel, M.S. Allman, K.J. Coakley, S.D. Dyer, C. Hodge, A.E. Lita, V.B. Verma, C. Lambrocco, E. Tortorici, A.L. Migdall, Y. Khang, D.R. Kumor, W.H. Farr, F. Marslil, M.D. Shaw, J.A. Stern, C. Abellán, W. Amaya, V. Pruneri, T. Jennevelen, M.W. Mitchell, PC, Kwiat, J.C. Bienfang, R.P. Mirin, E. Knill and S. W. Nam, *Phys. Rev. Lett.* **11**, 520402 (205).
- W. Rosenfeld, D. Burchardt, R. Garthoff, K. Redeker, N. Ortegel, M. Rau and H. Weinfurter, *Phys. Rev. Lett.* 119, 010402 (2017).

17 (18)

$$\frac{1}{34} \times \frac{1}{41} = \frac{1}{1394}$$

What was the Nobel Prize awarded for?

Talk outline:

- The Phenomenon: Bell nonlocality
- Nobel Laureate Work on Experimental Tests
- Current Research: Applications, Quantum Networks

©Johan Jarnestad/The Royal Swedish Academy of Sciences

- Einstein-Podolsky-Rosen (1935): This is stupid. It is obviously the top way
- John Bell (1964): For a certain experiment with multiple different measurements, it *can't* be the top way
- Nobel Laureates: Clauser, Aspect, and Zeilinger do experiments with these measurements in 70s, 80s, 90s; final definitive tests in 2015

 $\leftarrow \mathsf{Photon} \; \mathsf{Source} \to$

 $\leftarrow \mathsf{Photon} \; \mathsf{Source} \to$

Both detectors click ("++")

Both detectors click ("++")

Outcomes:

++

Alice-only click ("+0")

Outcomes: ++ +0

Bob-only click ("0+")

Outcomes: ++ +0 0+

Neither detector clicks ("00")

Outcomes:

++ +0 0+ 00

Alice measures Q

Bob measures S

Outcomes: ++ +0 0+ 00

Alice measures Q

Bob measures S

Alice measures Q

Bob measures T

Alice

Alice measures Q

Bob measures T

Alice

Alice measures R

Bob measures S

Alice

Alice measures R

Bob measures S

Alice

Alice measures R

Bob measures T

Alice

Alice measures R

Bob measures T

A simple example (each row is a probability distribution)

Bell Nonlocality

Another simple example:

Bell Nonlocality

Slightly more-complicated examples:

Bell Nonlocality

Slightly more-complicated examples:

	Q	R	S	Т
λ_1	+	+	+	+
λ_2	+	+	+	0
λ_3	+	+	0	+
λ_4	+	+	0	0
λ_5	+	0	+	+
÷	:	÷	÷	÷
λ_{16}	0	0	0	0

	Q	R	S	T
λ_1	+	+	+	+
λ_2	+	+	+	0
λ_3	+	+	0	+
λ_4	+	+	0	0
λ_5	+	0	+	+
÷	÷	÷	÷	÷
λ_{16}	0	0	0	0

	Q	R	S	T
λ_1	+	+	+	+
λ_2	+	+	+	0
λ_3	+	+	0	+
λ_4	+	+	0	0
λ_5	+	0	+	+
÷	÷	÷	÷	÷
λ_{16}	0	0	0	0

	Q	R	S	<i>T</i>
λ_1	+	+	+	+
λ_2	+	+	+	0
λ_3	+	+	0	+
λ_4	+	+	0	0
λ_5	+	0	+	+
÷	÷	÷	:	÷
λ_{16}	0	0	0	0

	++	+0	0+	00
QS	1/2	0	0	1/2
QT	1/2	0	0	1/2
RS	1/2	0	0	1/2
RT	1/2	0	0	1/2

The Clauser-Horne-Shimony-Holt Inequality

No local hidden variable can yield more than three "1" entries in the X regions:

Clauser-Horne-Shimony-Holt Inequality: $P(A = B|QS) + P(A = B|QT) + P(A = B|RS) + P(A \neq B|RT) \le 3$ Quantum Value: 3.416

John Clauser

- 1969 CHSH
- 1972 Freedman-Clauser Experiment
- 1974 Clauser-Horne paper

John Clauser

The 1972 Experiment:

- First Bell experiment
- Uses entangled photons
- Issues: fixed settings, low detection

Alain Aspect

- 1982 Bell experiment
- Uses photons
- Fast settings changes (10 ns)

Anton Zeilinger

1998 Bell experiment with random setting changes. Also, applications:

- 1997 Quantum Teleportation experiment; repeaters
- 2016-2017 Satellite entanglement
- 1989 Greenberger, Horne, Zeilinger multi-party entanglement
- 1999, 2000 GHZ Experiments
- 2006 QKD Experiment

My work: 2015 Experiment

My work: 2015 Experiment

Dealing with Noisy Data

CH-Eberhard

Outcomes +++00 +00 6378 3289314744336240 abSettings ab'6794 282523230 44311018 a'b6486 21358281844302570 a'b'106 2756230000 44274530

CH-E Inequality:

 $P(++|QS) - P(+0|QT) - P(0+|RS) - P(00|RT) \le 0$

Quantum can exceed 0

My Work

CH-E Inequality:

 $P(++|QS) - P(+0|QT) - P(0+|RS) - P(00|RT) \le 0$

- Memory Robustness (CHSH¹ and CH-E²)
- "Ignoring" unmentioned CH-E trials is OK (direct proof,² Doob's stopping theorem)

¹ P. Bierhorst, "A Rigorous Analysis of the Clauser–Horne–Shimony–Holt Inequality Experiment When Trials Need Not be Independent" Foundations of Physics 44 (7):736-761 (2014)

² P. Bierhorst, "A robust mathematical model for a loophole-free Clauser-Horne experiment" J. Phys. A: Math. Theor. 48: 195302 (2015)

Loophole Free Bell experiments

- B. Hensen, H. Bernien, A.E. Dréau, A. Reiserer, N. Kalb, M.S Blok, J. Ruitenberg, R.F.L. Vermeulen, R.N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M.W. Mitchell, M. Markham D.J. Twitchen, D. Elkouss, S. Wehner, T.H. Taminiau and R. Hanson, *Nature* 526, 682 (2015).
- 36. M. Giustina, M. A. M. Versteegh, S. Wengerowsky, J. Handsteiner, A. Hochrainer, K. Phelan, F. Steinlechner, J. Kofler, J.-Å. Larsson, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, J. Beyer, T. Gerrits, A. E. Lita, L.K. Shalm, S. W. Nam, T. Scheidl, R. Ursin, B. Wittmann and A. Zeilinger Phys. Rev. Lett. 115, 250401 (2015).
- 37. LK, Shahm, E. Meyer-Scott, B.G. Christensen, P. Bierhorst, M.A. Wayne, M.J. Stevens, T. Gerrits, S. Glancy, D.R. Hamel, M.S. Allman, K.J. Coakley, S.D. Dyer, C. Hodge, A.E. Lita, V.B. Verma, C. Lambrocco, E. Tortorici, A.L. Migdall, Y. Khang, D.R. Kumor, W.H. Farr, F. Marslil, M.D. Shaw, J.A. Stern, C. Abellán, W. Amaya, V. Pruneri, T. Jennevelen, M.W. Mitchell, PC, Kwiat, J.C. Bienfang, R.P. Mirin, E. Knill and S. W. Nam, *Phys. Rev. Lett.* **11**, 520402 (205).
- W. Rosenfeld, D. Burchardt, R. Garthoff, K. Redeker, N. Ortegel, M. Rau and H. Weinfurter, *Phys. Rev. Lett.* 119, 010402 (2017).

17 (18)

What does it all mean?

What does it all mean?

"True" randomness in nature, appearing nonlocally

Randomness Intuition

Now consider the following special distribution:

	++	+0	0+	00
ab	1/2	0	0	1/2
ab'	1/2	0	0	1/2
a' b	1/2	0	0	1/2
a' b'	0	1/2	1/2	0

Randomness Intuition

A possible decomposition?

Randomness Intuition

A possible decomposition?

When Bob chooses b', Alice can signal Bob.

Randomness Intuition

But if we don't try to decompose the distribution, Bob's probability of "+" is independent of Alice's setting choice.

Randomness Intuition

But if we don't try to decompose the distribution, Bob's probability of "+" is independent of Alice's setting choice.

If we disallow signaling between Alice and Bob, we must accept that there is randomness in the distribution.

Ongoing Research

- Randomness generation using a loophole-free Bell test¹
- Device-independent quantum secured communication
- New Measures of Quantum Nonlocality for Multiple Parties²
- Using Genuine Multi-Party Nonlocality in Quantum Networks³

¹Experimentally generated randomness certified by the impossibility of superluminal signals, Bierhorst et al., Nature 556:223 (2018)

²Ruling out bipartite nonsignaling nonlocal models for tripartite correlations, Bierhorst, Phys. Rev. A 104:012210 (2021)

³Hierarchy of Multipartite Nonlocality and Device-Independent Effect Witnesses, Bierhorst and Prakash, Phys. Rev. Lett. 130:250201 (2023)

Quantum Networks and Genuine Multipartite Nonlocality

- GMNL
- Entangled Measurements
- Applications?

Thank You

Peter Bierhorst Mathematics Department - University of New Orleans plbierho@uno.edu

