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NON-ATTACKING ROOKS

Definitions
• A rook is a chess piece that may move any number of spaces
either horizontally or vertically per move.

• Two rooks are non-attacking if they are not be placed on the
same row or column of the board.

Example

8 rZ0Z0Z0Z
7 Z0ZrZ0Z0
6 0Z0Z0ZrZ
5 Z0Z0s0Z0
4 0Z0Z0Z0s
3 Z0Z0ZrZ0
2 0ZrZ0Z0Z
1 ZrZ0Z0Z0

a b c d e f g h

8 rZ0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0s0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0ZrZ0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

8 rZ0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0ZrZ
5 Z0Z0s0Z0
4 0Z0s0Z0s
3 Z0Z0ZrZ0
2 0ZrZ0Z0Z
1 ZrZ0Z0Z0

a b c d e f g h

1



MAXIMUM NUMBER OF NON-ATTACKING ROOKS

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 s0Z0Z0Z0

a b c d e f g h
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MAXIMUM NUMBER OF NON-ATTACKING ROOKS

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0s0Z0Z0Z
1 s0Z0Z0Z0

a b c d e f g h
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MAXIMUM NUMBER OF NON-ATTACKING ROOKS

8 0Z0Z0Z0s
7 Z0Z0Z0s0
6 0Z0Z0s0Z
5 Z0Z0s0Z0
4 0Z0s0Z0Z
3 Z0s0Z0Z0
2 0s0Z0Z0Z
1 s0Z0Z0Z0

a b c d e f g h

• The maximum number of non-attacking rooks that may be
placed on an n× n chessboard is n.

• The number of ways of placing n non-attacking rooks on an
n× n chessboard is n! = n(n− 1)(n− 2) · · · (2)(1).
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ROOK MONOID

Let Mn denote the algebra of n× n matrices over C. Boards are in
one-to-one correspondence with zero-one matrices with at most one
nonzer0 entry in each row and column.

8 rZ0Z0Z0Z
7 Z0ZrZ0Z0
6 0Z0Z0ZrZ
5 Z0Z0s0Z0
4 0Z0Z0Z0s
3 Z0Z0ZrZ0
2 0ZrZ0Z0Z
1 ZrZ0Z0Z0

a b c d e f g h

1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
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ROOK MONOID

Rook Monoid
The Rook monoid Rn consists of all zero-one matrices with at most
one nonzero entry in each row and column.

Remark
Elements with n entries are in one-to-one correspondence with
permutations of [n].

Example

R2 =
{ [ 0 0

0 0
]
,
[ 0 1
0 0
]
,
[ 1 0
0 0
]
,
[ 0 0
1 0
]
,
[ 0 0
0 1
]
,
[ 0 1
1 0
]
,
[ 1 0
0 1
] }

.
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THE SYMPLECTIC MONOID MSpn WITH n = 2l

The symplectic group is

Spn =
{
A ∈ GLn | A⊤JA = J

}
and the symplectic monoid is

MSpn =
{
A ∈ Mn | A⊤JA = AJA⊤ = cJ for some c ∈ C

}
.

7



ADMISSIBLE SETS

Admissible Sets
Define an involution denoted by θ on the set n = 1, 2, . . . ,n such
that

θ(i) = n+ 1− i.

A subset I of n is considered admissible if I ∩ θ(I) = ∅.

Example
If n = 4, then the admissible subsets of n are

∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {2, 4}, {3, 4}, {1, 2, 3, 4}.

8
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THE SYMPLECTIC ROOK MONOID

Let I(A) and J(A) represent the sets of indices for the nonzero
columns and rows of A = (aji) ∈ Rn, respectively.

Theorem
The symplectic rook monoid is

RSpn = {A ∈ Rn | A is singular and I(A) and J(A) are admissible } ∪W
'
{
A ∈ Rn | AJA⊤ = A⊤JA = 0 or J

}
.
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ROOK POSET



NOTATION

For x = (xij) ∈ Rn define the sequence (x1, . . . , xn) by

xj =
{
0 if the j -th column consists of zeros,
i if xij = 1

Let x denote both the n-tuple and the matrix.

Example

x =

0 0 0
1 0 0
0 1 0

 = (2, 3, 0).

10



ROOK POSET ORDER

Let {i1, . . . , ik} and {j1, . . . , jk} be two sets of integers such that
i1 < . . . < ik and j1 < . . . < jk. Then define a partial order as follows

{i1, . . . , ik} ⩽ {j1, . . . , jk} ⇐⇒ i1 ≤ j1, i2 ≤ j2, . . . , ik ≤ jk
Let x = (x1, . . . , xn) ∈ Rn. For i ∈ {1, . . . ,n}, define

x̃(i) := {x1, . . . , xi}

Theorem
Let x = (a1, . . . , an) and y = (b1, . . . ,bn) be two elements in Rn. Then
x ≤ y if and only if for every i ∈ {1, . . . ,n− 1}, we have x̃(i) ≤ ỹ(i).

Corollary
Let x = (a1, . . . , an) and y = (b1, . . . ,bn) be two elements in RSpn .
Then x ≤ y if and only if for every i ∈ {1, . . . ,n− 1}, we have
x̃(i) ≤ ỹ(i).

11
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ROOK POSET ORDER

Example
Let x = (3, 1, 5, 2, 4) and y = (5, 2, 4, 3, 1) be elements of R5. Then,

x̃(1) = {3} ≤ {5} = ỹ(1)
x̃(2) = {1, 3} ≤ {2, 5} = ỹ(2)

x̃(3) = {1, 3, 5} ≤ {2, 4, 5} = ỹ(3)
x̃(4) = {1, 2, 3, 5} ≤ {2, 3, 4, 5} = ỹ(4),

Thus, x ≤ y.

12



THE BOREL SUBMONOID OF MSpn

Let Bn be the upper triangular matrices. Then,
BSpn = Bn ∩ RSpn := {x ∈ RSpn : x ≤ 1} .

(1, 2, 3, 4)

(0, 0, 3, 4) (0, 2, 0, 4) (1, 0, 3, 0) (1, 2, 0, 0)

(0, 0, 2, 4) (0, 0, 3, 1) (0, 1, 0, 3) (0, 2, 0, 1) (1, 0, 2, 0)

(0, 0, 0, 4) (0, 0, 1, 3) (0, 0, 2, 1) (0, 0, 3, 0) (0, 1, 0, 2) (0, 2, 0, 0) (1, 0, 0, 0)

(0, 0, 0, 3) (0, 0, 1, 2) (0, 0, 2, 0) (0, 1, 0, 0)

(0, 0, 0, 2) (0, 0, 1, 0)

(0, 0, 0, 1)

(0, 0, 0, 0) 13



COUNT ON THE UPPER TRIANGULAR
SUBMONOID



ARC-DIAGRAMS

Arc-Diagram
A labeled chain is a chain whose vertices are labeled by distinct
numbers.

An arc-diagram on n vertices is a disjoint union of
labeled chains where the labels are from {1, ...,n} and each label
i ∈ {1, . . . ,n} is used exactly once.

An Arc-Diagram on 9 Vertices

1 2 3 4 5 6 7 8 9

An arc-diagram’s subchains represent the blocks of the
corresponding set partition.

14
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STIRLING NUMBERS OF THE SECOND KIND

The number of set partitions of S = 1, ...,n into k blocks, denoted by
S(n, k), and called the (n, k)-th Stirling number of the second kind, is
given by the formula

S(n, k) = 1
k!

k∑
i=1

(−1)i
(
k
i

)
(k− i)n.

The recurrence formula for the Stirling numbers of the second kind
is well-known:

S(l+ 1, k) = S(l, k− 1) + kS(l, k)

where

S(l, k) =


1 if l = k = 0
0 if l > 0 and k = 0
0 if l < 0 or k < 0 or l < k

15



COUNT ON Bn

Denote the subsemigroup of nilpotent elements in Bn by Bniln . Then
define a bijection Bn −→ Bniln+1 by

A 7−→ Ã :=


0
... A
0 . . . 0

 ∈ Bn+1 (A ∈ Bn)

Now define the bijection Bniln −→ Πn+1 as follows: the matrix
corresponding to the set partition A has an entry equal to 1 in row i
and column j if and only if (i, j) is an arc of A.

Number of elements of Bn of rank n+ 1− k
Therefore, for k ∈ {1, . . . ,n+ 1},

S(n+ 1, k) = |{A ∈ Bn : rank A = n+ 1− k}|

16
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NUMBER OF ELEMENTS ON Bn

Count on Bn
The number of elements of Bn is given by the summation

bn+1 :=
n+1∑
k=0

S(n+ 1, k),

which is called the (n+ 1)th Bell number.

Number of Elements of Rn of rank k
The number of elements of Rn of rank k is given by

|{A ∈ Rn : rank(A) = k}| =
(
n
k

)
n!

(n− k)! .

17



NUMBER OF ELEMENTS OF R8 OF RANK 2

|{A ∈ R8 : rank(A) = 2}| =
(
8
2

)
8!

(8− 2)! =
(
8
2

)
8 ∗ 7.

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0ZrZ0Z0Z
1 s0Z0Z0Z0

a b c d e f g h
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COUNT ON Rn VIA STIRLING NUMBERS OF THE SECOND KIND

Every element A of Rn has a triangular decomposition in Rn,

A = Al + Ad + Au

where Al is a strictly lower triangular matrix, Ad is a diagonal matrix,
and Au is a strictly upper triangular matrix.

Proposition 3
Let Sa,b,c(n) denote the number of elements A ∈ Rn such that
rank(Al) = a, rank(Ad) = b, and rank(Au) = c. Then we have(

n
k

)
n!

(n− k)! =
∑

a+b+c=k

Sa,b,c(n)

=
∑

a+b+c=k

(
n
b

)
S(n+ 1,n+ 1− a)S(n+ 1,n+ 1− c)

19



THE FOLDING OPERATORS

Consider the folding operators on an element of RSp8
Folding from Top to Bottom, FTB

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0





0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0




20



THE FOLDING OPERATORS

Consider the folding operators on an element of RSp8
Folding from Left to Right, FLR

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0





0 0 0 1
1 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0





21



THE FOLDING MAP

FTB and FLR can be composed. In fact, FTBFLR = FLRFTB

The Folding Map, F
Let F : RSpn → Rl defined by the composition of folding operators.

Proposition 4
The folding map is a surjective map from RSpn onto the rook monoid
Rl. The restricted folding map, F′ := F|BSpn , is also surjective.

We’re almost there!
We are now ready to count the number of elements of BSpn by
“unfolding” the elements of Rl first horizontally from bottom to top,
and then vertically from right to left.

22
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THE PREIMAGE OF J2 UNDER F′ : BSp4 → R2

Let’s compute the preimage of J2 =
[
0 1
1 0

]
under F′ : BSp4 → R2 or

equivalently, determine the set F−1LR
(
F−1TB (J2)

)
∩ BSp4 .

F−1TB (J2)

1 0
0 0
0 1
0 0




1 0
0 1
0 0
0 0




0 1
1 0

 
FTB FTB

Since we are looking for the upper triangular elements in the
preimage, the lower halves of the 4 × 2 matrices must be upper
triangular. 23



F−1LR
(
F−1TB (J2)

)
∩ BSp4

0 0 1 0
0 0 0 0
0 0 0 1
0 0 0 0




0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0




FLR
,

1 0
0 0
0 1
0 0




0 1 0 0
0 0 0 1
0 0 0 0
0 0 0 0




0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0




FLR
,

1 0
0 1
0 0
0 0




We find that, in total, there are four matrices that fold onto J2.

24



THE COUNT ON BSPn

Using this technique, we find that the number of elements of BSpn
that lie in preimage of the folding map F′.

Theorem 5
The number of elements of rank k in BSpn is given by

∑
a+b+c=k

2a+c3b
(
l
b

)
S(l+ 1, l+ 1− a)S(l+ 1, l+ 1− c)

where (a,b, c) ∈ Z3≥0.

25



STIRLING POSETS



THE HASSE DIAGRAM OF BSPn
nil

The subvariety Bnil := {x ∈ B : xm = 0 for some m ∈ Z+} will be
called the nilpotent semigroup of B.

(0, 1, 0, 3)

(0, 0, 1, 3) (0, 0, 2, 1) (0, 1, 0, 2)

(0, 0, 0, 3) (0, 0, 1, 2) (0, 0, 2, 0) (0, 1, 0, 0)

(0, 0, 0, 2) (0, 0, 1, 0)

(0, 0, 0, 1)

(0, 0, 0, 0) 26



STIRLING POSETS

Let A and B be two arc-diagrams on n vertices. Then B is said to
cover A, and denoted by A ≺ B, if it is obtained from A by one of the
following three operations:

1. The shortening of an arc of A.
With this operation, move exactly one endpoint of an arc to
another vertex so that the resulting arc is shortened as
minimally as possible but the number of crossings does not
change.

1 2 3 4 ≺ 1 2 3 4

2. Deleting a crossing.
3. Adding a new arc.

27



STIRLING POSETS OF TYPE A

Let A and B be two arc-diagrams on n vertices. Then B is said to
cover A, and denoted by A ≺ B, if it is obtained from A by one of the
following three operations:

1. The shortening of an arc of A.
2. Deleting a crossing.
With this operation, interchange the rightmost endpoints of two
crossing arcs so that they become a pair of non-crossing and
nested arcs; require in this operation that only one crossing is
deleted as a result of this operation.

1 2 3 4 ≺ 1 2 3 4

3. Adding a new arc.

28



STIRLING POSETS OF TYPE A

Let A and B be two arc-diagrams on n vertices. Then B is said to
cover A, and denoted by A ≺ B, if it is obtained from A by one of the
following three operations:

1. The shortening of an arc of A.
2. Deleting a crossing.
3. Adding a new arc.
With this operation, a new arc is introduced between two
vertices in such a way that the new arc is not under any other
(older) arcs and the endpoints of the new arc are as far from
each other as possible.

1 2 3 4 ≺ 1 2 3 4
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STIRLING POSETS OF TYPE A

Let A and B be two arc-diagrams on n vertices. Then B is said to
cover A, and denoted by A ≺ B, if it is obtained from A by one of the
following three operations:

1. The shortening of an arc of A.
2. Deleting a crossing.
3. Adding a new arc.

Theorem
The arc-diagram poset (An,�) is isomorphic to

(
Bniln ,≤

)
, hence it is

a bounded, graded, and EL-shellable poset.

30



SYMPLECTIC ARC DIAGRAMS

Definition
An arc diagram A ∈ An is symplectic if I ∩ θ(I) = ∅ and J ∩ θ(J) = ∅
where θ is the involution defined by θ(l) = n− l+ 1. We denote the
set of all symplectic arc diagrams as ASpn.

Suppose A is a symplectic Stirling arc diagram. Then

1. each vertex of A can only be the start of one arc
2. each vertex of A can only be the end of one arc
3. if a vertex of v of A is the start of an arc and the end of an arc,
the vertex θ(v) is empty, i.e. θ(v) is not the start or end of an arc
in A.

Lemma

The set of nilpotent symplectic rooks, BSpniln , is bijective to the set
of symplectic Stirling arc diagrams, ASpn.
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EXAMPLE OF A SYMPLECTIC ARC DIAGRAM

Consider the symplectic rook

A =


0 1 0 0
0 0 0 1
0 0 0 0
0 0 0 0


which may be written as x = (0, 1, 0, 2). To construct the arc diagram,
we form the arcs {1, 2} and {2, 4} on a chain of four vertices.

1 2 3 4

Figure 1: A symplectic arc diagram corresponding to π = 124|3
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SYMPLECTIC STIRLING POSETS

Let A and B be two symplectic arc-diagrams on n vertices. Then B is
said to cover A, and denoted by A ≺ B, if it is obtained from A by one
of the following three operations:

1. The shortening of an arc of A.

1 2 3 4 5 6
≺

1 2 3 4 5 6

2. The shortening of two repeated arcs of A
3. Deleting a crossing.
4. Adding a new arc.
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SYMPLECTIC STIRLING POSETS

Let A and B be two arc-diagrams on n vertices. Then B is said to
cover A, and denoted by A ≺ B, if it is obtained from A by one of the
following three operations:

1. The shortening of an arc of A.
2. The shortening of two repeated arcs of A

1 2 3 4 5 6 7 8
≺

1 2 3 4 5 6 7 8

3. Deleting a crossing.
4. Adding a new arc.
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SYMPLECTIC STIRLING POSETS
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SYMPLECTIC STIRLING POSETS
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SYMPLECTIC STIRLING POSETS

Let A and B be two arc-diagrams on n vertices. Then B is said to
cover A, and denoted by A ≺ B, if it is obtained from A by one of the
following three operations:

1. The shortening of an arc of A.
2. The shortening of two repeated arcs of A
3. Deleting a crossing.
4. Adding a new arc.

Theorem
The symplectic Stirling poset (ASpn,�) is isomorphic to(
BSpniln ,≤

)
.
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(ASpn,�) ∼=
(
BSpNILn ,≤

)
(0, 1, 0, 3)

(0, 0, 1, 3) (0, 0, 2, 1) (0, 1, 0, 2)

(0, 0, 0, 3) (0, 0, 1, 2) (0, 0, 2, 0) (0, 1, 0, 0)

(0, 0, 0, 2) (0, 0, 1, 0)

(0, 0, 0, 1)

(0, 0, 0, 0)

Figure 2:
(
BSpnil4 ,≤

)

1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4

1 2 3 4

Figure 3: (ASp4,⪯)
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SYMPLECTIC ROOKS WITH k ARCS

Denote the set of strictly upper triangular symplectic rooks as RSpn
and let RSpn,k be the set of strictly upper triangular symplectic rooks
of rank k.

Lemma
The following are true

1.
∣∣RSpn,k∣∣ = 0, for all k > ℓ.

2.
∣∣RSpn,0∣∣ = 1.

3.
∣∣RSpn,1∣∣ = (n2).

4.
∣∣RSp2ℓ,2∣∣ = (2ℓ2 )(2ℓ

2−5ℓ+4)−ℓ

2
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DERANGEMENTS OF TYPE B

Consider two sets of n symbols [n] = 1, 2, ...,n and [n] = 1, 2, . . . ,n,
with i 6= j, for any i, j. Define Xn = [n] ∪ [n].

Definition
Permutations of Xn such that σ(̄j) = σ(j) for all j ∈ Xn are signed
permutations or permutations of type B.

Example
Consider the following signed permutation.

σ =

(
1 2 3 4 1̄ 2̄ 3̄ 4̄
2̄ 1 3 4̄ 2 1̄ 3̄ 4

)
.

Since σ(̄j) = σ(j), we may condense this notation and express σ in
line notation as

σ = 2134.
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SYMPLECTIC ROOKS WITH ℓ ARCS

A type B derangement is a type B permutation without fixed points.
The number of derangements of type B of length n is given by dBn.

Theorem

For a positive integer ℓ, we have that∣∣RSp2ℓ,ℓ∣∣ = dBℓ .

Bijection:
Consider the following function

φ : DB
ℓ −→ RSp2ℓ,ℓ,

given by φ(π) = {f(i, π(i)) : i ∈ [ℓ]} and where f is defined as follows

f(i, j) =


(i, θ(|j|)) if j < 0
(i, j) 0 < i < j
(θ(i), θ(j)) if 0 < j < i.
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SYMPLECTIC ROOKS WITH ℓ ARCS

A type B derangement is a type B permutation without fixed points.
The number of derangements of type B of length n is given by dBn.

Theorem

For a positive integer ℓ, we have that∣∣RSp2ℓ,ℓ∣∣ = dBℓ .

Bijection:
Consider the following function

φ : DB
ℓ −→ RSp2ℓ,ℓ,
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PROOF IDEA

To illustrate the function φ, consider the element 32̄1 ∈ DB
ℓ . Then,

f(1, 3) = (1, 3) since 0 < 1 < 3
f(2, 2̄) = (2, θ(2)) = (2, 5) since 2̄ < 0
f(3, 1) = (θ(3), θ(1)) = (4, 6) since 1 > 0 and 3 > 1

The symplectic arc-diagram is then defined by the arcs {1, 3}, {2, 5},
and {4, 6} shown in Figure 4.

1 2 3 4 5 6

Figure 4: φ(32̄1)
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(ASpn,�) ∼=
(
BSpNILn ,≤

)
(0, 1, 0, 3)

(0, 0, 1, 3) (0, 0, 2, 1) (0, 1, 0, 2)

(0, 0, 0, 3) (0, 0, 1, 2) (0, 0, 2, 0) (0, 1, 0, 0)

(0, 0, 0, 2) (0, 0, 1, 0)

(0, 0, 0, 1)

(0, 0, 0, 0)

Figure 5:
(
BSpnil4 ,≤

)

1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4

1 2 3 4

Figure 6: (ASp4,⪯)
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MAXIMAL SYMPLECTIC ROOKS

Denote the set of maximal symplectic arc diagrams as MSp2ℓ.

n = 2l |BSpniln | |MRSpn|
2 2 1
4 12 2
6 96 5
8 1008 12
10 12960 32
12 196800 88
14 3440640 247
16 - 712
18 - 2084

Table 1: Number of Maximal Symplectic arc diagrams
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STRUCTURE OF MAXIMAL SYMPLECTIC ROOKS

Let I(A) be the set of end points and J(A) be the set of start points of
the arcs of A.
Definition
A symplectic arc diagram is θ-symmetric if

1. if i ∈ I(A) and i /∈ J(A), then θ(i) ∈ J(A)
2. if j ∈ J(A) and j /∈ I(A), then θ(j) ∈ I(A)
3. if i ∈ I(A) and i ∈ J(A), then θ(i) /∈ I(A) and θ(i) /∈ I(A)
4. if i /∈ I(A) and i /∈ J(A), then θ(i) ∈ I(A) and θ(i) ∈ I(A)

All maximal symplectic arc diagrams on n = 2ℓ vertices

1. have ℓ arcs and
2. have no crossings,
3. is θ-symmetric

45



θ-SYMMETRY

Consider x = (0, 1, 2, 3, 0, 0, 0, 5). Then A(x) ∈ ASp8 and

I(A) = {2, 3, 4, 8}
J(A) = {1, 2, 3, 5}

and thus, A(x) is θ-symmetric and pictured below.

1 2 3 4 5 6 7 8

Figure 7: θ-symmetry
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STRUCTURE OF MAXIMAL SYMPLECTIC ARC DIAGRAMS

Proposition
A symplectic arc diagram, A, on n = 2ℓ vertices is maximal in
(ASpn,≺) if and only if A has ℓ arcs, is noncrossing, and is
θ-symmetric,

Figure 8: Elements ofMRSp8
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CARDINALITY OFMRSpn

Theorem
The number of maximal symplectic arc diagrams of length n = 2ℓ is
given by

|MRSpn| =
ℓ∑
i=0

M(2i)S(n− 2i)

such that M(i) is number of maximal arcs on i and S(n− 2i) counts
the number of possible L/R pairs.
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MOTZKIN PATHS

Definition
A Motzkin path P of size n is a lattice path in the integer plane ×
from (0, 0) to (n, 0) which never passes below the x-axis and whose
permitted steps are the up step u = (1, 1), the down step
d = (1,−1), and the horizontal step h = (1, 0).

Example
The elements ofM3 can be expressed as Motzkin words of size,
M3 = {uhd,udh,hud,hhh} or as Motzkin paths.
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THE CARDINALITY OF L/R PAIRS, S(k)

Conjecture
Let A ∈ MRSpn. Partition A = L|M|R as described in the previous
proof. The set of L/R pairs, denoted S(k) is in bijection with Motzkin
paths of length k− 2 with 2-colored horizontal steps determined by
height.

Motzkin Paths from Left Components of Length 3 and 4 ofMRSp8

1

2

1 1

2 2
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QUESTIONS?
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