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Introduction to Elliptic Curves
▶ Elliptic curves are ubiquitous in number theory!
▶ They are smooth, projective curves of genus one, usually of

the form y2 = x3 +Ax+B.
▶ These curves arise naturally in the study of Diophantine

equations, particularly those concerning rational points, where
they help answer questions about the existence and structure
of solutions.

▶ Elliptic curves are crucial to major results such as Fermat’s
Last Theorem, which was proven using insights from elliptic
curves and modular forms.

▶ Moreover, elliptic curves have applications in cryptography,
particularly in elliptic curve cryptography (ECC), where their
group structure provides a secure foundation for encryption
algorithms due to the difficulty of the elliptic curve discrete
logarithm problem.
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More about Elliptic Curves!
▶ Elliptic curves also play a role in the Birch and

Swinnerton-Dyer Conjecture, one of the Millennium Prize
Problems, which connects the rank of an elliptic curve (the
number of independent rational points) with the behavior of
its associated L-function.

▶ The Hasse-Weil L-function L(s, V ) is attached to an algebraic
variety V defined over a number field K. It is constructed
using the local zeta functions Z(Vp, t), which correspond to
the reductions of V at prime ideals p of the ring of integers
OK of K.

▶ For simplicity, consider the case of an elliptic curve E defined
over a number field K. The Hasse-Weil L-function of E,
denoted L(s,E/K), is formally defined by an Euler product
over the prime ideals p of K:

L(s,E/K) =
∏
p

Lp(s,E),
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Mordell Curves
▶ Mordell equations, are a subset of elliptic curves and take the

form E := y2 = x3 + k, with k ∈ Z.
▶ Named after Louis Mordell, an American-born British

mathematician, known for his pioneering research in number
theory.

▶ These curves were closely studied by Louis Mordell, from the
point of view of determining their integer points. He showed
that every Mordell curve contains only finitely many integer
points (x, y).

▶ The finite nature of N(E) for Mordell equations invites a
natural inquiry into the precise determination of these
solutions.

▶ Examples of work done include Hall’s conjecture, which states
that y2 − x3 ≥ C

√
|x| for an absolute constant C.

▶ The modern version of Hall’s conjecture posits that
y2 − x3 ≥ C(ε) · x

1
2
−ε for any ϵ > 0 and a constant C(ε)

dependent solely on ε.
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Siegel’s Theorem
▶ Siegel’s theorem says that for a smooth algebraic curve C of

genus g defined over a number field K, presented in an affine
space in a given coordinate system, there are only finitely
many points on C with coordinates in the ring of integers O
of K, provided g > 0.

▶ This well known result of Siegel implies that the number of
solutions of Mordell equation is finite.

Note

Broadly, the genus of a curve is the number of
handles added to a sphere, or the number of holes
in a surface. A sphere has genus g = 0. A torus
has genus g = 1. A double toroid (below) has
genus g = 2.

Figure: Enter Caption
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Some Solutions of Elliptic Curves

Value of k Number of Integral Points Points
-1 1 (1, 0)
-2 2 (3, 5), (3,−5)
-8 1 (2, 0)
-13 2 (17, 70), (17,−70)
-15 2 (4, 7), (4,−7)
-18 2 (3, 3), (3,−3)
-19 2 (7, 18), (7,−18)
-20 2 (6, 14), (6,−14)
-23 2 (3, 2), (3,−2)
-25 2 (5, 10), (5,−10)
-27 1 (3, 0)

Table: Table of Solutions for k < 0
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Some More Solutions

Value of k Number of Integral Points Points
2 2 (−1,−1), (−1, 1)
3 2 (1,−2), (1, 2)
4 2 (0,−2), (0, 2)
5 2 (−1,−2), (−1, 2)
10 2 (−1,−3), (−1, 3)
16 2 (0,−4), (0, 4)

Table: Table of Solutions for k > 0
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Main Question

Which Mordell curves of the form y2 = x3 + k have
exactly |k| integral solutions?
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Problems Faced
Before we delve into the paper, we provide a brief description of
the state of the art bounds regarding elliptic curves.
▶ Helfgott and Venkatesh proposed a novel approach to

bounding E(K,S) by invoking the best sphere-packing results
given by Kabatjanskii and Levenshtein, and thereby improved
upon previous bounds on elliptic curves, breaking the
N(E) = O(|Disc(E)|0.5) barrier.

▶ Bhargava et al improved upon this bound and proved
N(E) = O(|Disc(E)|0.1117...+ϵ).

▶ Alpoge and Ho proved that

N(E) = O

2rank(EA,B)
∏

p2|∆A,B

min
(
4

⌊
νp (∆A,B)

2

⌋
+ 1, 72

7

)
▶ However, the aforementioned bounds don’t allow us to

explicitly compute all k such that N(E) = |k|. Therefore, we
turn our attention to binary cubic forms! 9/29



Tools Used

▶ In order to prove the statements above, we rely heavily on the
connection between binary cubic forms and Mordell curves.

▶ The main theorem is proved by bounding the number of
integral points on a Mordell curve by the 3-part of the class
number of the quadratic field Q(

√
k), denoted by h3(k), and

then bounding the class number of the quadratic field using
the explicit version of Dirichlet’s class number formula.

▶ Additionally, we also find explicit bounds for the number of
integral points on well defined twists of elliptic curve, and
parameterized families of elliptic curves. We improve the state
of the art lower bound for number of integral solutions for
families of Mordell curves by exploiting this very relation.
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Finitely Many Cases
Theorem
There exist only finitely many elliptic curves E : y2 = x3 + k such
that N(E) ≥ |k|.
Proof.
▶ The discriminant of an elliptic curve y2 = x3 + ax+ k is

Disc(E) := −16(4a3 + 27k2). Now, since a = 0, the
discriminant is simply Disc(E) = −432k2.

▶ As demonstrated by Bhargava et al, the number of integral
points for any elliptic curve E over Q in Weierstrass form with
integral coefficients is at most Oε

(
|Disc(E)|0.1117+ε

)
.

▶ Now, N(E) = Oε

(
| − 432k2|0.1117+ε

)
. Clearly,

lim
k→∞

|k|
N(E) = ∞. Hence there are only finitely many cases

where N(E) ≥ |k| and hence only finitely many cases where
N(E) = |k|.
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Introduction to Binary Cubic Forms
▶ A binary cubic form is a homogeneous polynomial of degree 3.
▶ It is often represented as:

F (x, y) = ax3 + 3bx2y + 3cxy2 + dy3

▶ Let C1(x, y) = (a1, b1, c1, d1) and C(x, y) = (a, b, c, d) be
integral binary cubic forms.

▶ The forms C1 and C are said to be equivalent, written as
C1 ∼ C, if there exists a matrix M ∈ GL2(Z) such that the
equation:

C1(x1, y1) = C(x, y) ◦M

holds.
▶ The general linear group of order 2 in integers is defined as

GL(2,Z) :=
{(

a b
c d

)∣∣∣∣ a, b, c, d ∈ Z, ad− bc ̸= 0

}
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Binary Cubic Forms are Cool!
▶ Boris Delone and Dmitry Faddeev showed that binary cubic

forms with integer coefficients can be used to parametrize
orders in cubic fields.

▶ Let K be a number field defined by a root θ of the polynomial
x3 + px2 + qx+ r with p, q, r ∈ Z such that there exists an
integral basis of the form (1, θ, (θ

2+tθ+u)
f ) with t, u, f ∈ Z and

f = [ZK : Z[θ]]
▶ Then we choose α = θ and β = (θ2 + tθ + u)/f .
▶ Now, we have explicitly

FB(x, y) =
t3 − 2t2p+ t(q + p2) + r − pq

f2
x3

+
−3t2 + 4tp− (p2 + q)

f
· x2y

+ (3t− 2p)xy2 − fy3

▶ Fun fact! There are infinitely many acceptable binary cubic
forms. 13/29



Main Theorems

Theorem
There exists a correspondence between the set of integral solutions
Sk = {(X1, Y1) , . . . , (XNk

, YNk
)} for the Mordell equation

Y 2 = X3 + k and the set Tk of triples (F, x, y) where F is a
binary cubic form of the shape ax3 + 3bx2y + 3cxy2 + dy3 with
discriminant −108k and with integers x, y satisfying F (x, y) = 1.

Theorem
Furthermore, there exists a bijection between Tk and Sk under the
actions of SL2(Z) and GL2(Z).
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Proof of Main Theorems
Let

F = F (x, y) = ax3 + 3bx2y + 3cxy2 + dy3

be a binary cubic form with the discriminant
DF = −27(a2d2 − 6abcd− 3b2c2 + 4ac3 + 4b3d)

We observe the fact that the set of the binary cubic forms of the
shape F is closed within the larger set of binary cubic forms of the
set Z[x, y] under the action of both SL2 and GL2. Now, describe
the Hessian of the F to be

H = HF (x, y) = −1

4

(
∂2F

∂x2
∂2F

∂y2
−
(

∂2F

∂x∂y

)2
)

Define the Jacobian determinant of F and H, a cubic form
G = GF defined as

G = GF (x, y) =
∂F

∂x

∂H

∂y
− ∂F

∂y

∂H

∂x
.
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Proof of Main Theorems
Define the Jacobian determinant of F and H, a cubic form
G = GF defined as

G = GF (x, y) =
∂F

∂x

∂H

∂y
− ∂F

∂y

∂H

∂x
.

Now, we have
H/9 =

(
b2 − ac

)
x2 + (bc− ad)xy +

(
c2 − bd

)
y2

and
G/27 = a1x

3 + 3b1x
2y + 3c1xy

2 + d1y
3,

where
a1 = −a2d+3abc−2b3, b1 = −b2c−abd+2ac2, c1 = bc2−2b2d+acd, d1 = −3bcd+2c3+ad2.

These covariants satisfy the syzygy
4H(x, y)3 = G(x, y)2 + 27DF (x, y)2.

Defining D1 = D/27,H1 = H/9 and G1 = G/27, we get
4H1(x, y)

3 = G1(x, y)
2 +D1F (x, y)2. 16/29



Proof Continued
We note that if (x0, y0) satisfies the equation F (x0, y0) = 1 and
D1 ≡ 0 (mod 4) then necessarily G1 (x0, y0) ≡ 0 (mod 2). We
may therefore conclude that Y 2 = X3 + k, where

X = H1 (x0, y0) , Y =
G1 (x0, y0)

2
and k = −D1

4
= − D

108
.

It follows that, to a given triple (F, x0, y0), where F is a cubic
form of the shape ax3 + 3bx2y + 3cxy2 + dy3 with discriminant
−108k, and x0, y0 are integers for which F (x0, y0) = 1, we can
associate an integral point on the Mordell equation Y 2 = X3 + k.
The converse of this can be proven easily by taking the covariants
of the factors to be

X =
G1(1, 0)

2
=

G(1, 0)

54
and Y = H1(1, 0) =

H(1, 0)

9

The proof of bijection between Tk and Sk under the action of
GL2(Z) and SL2(Z) is achieved by constructing a contradiction.
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To Reiterate

▶ There exists a bijective correspondence between integral
solutions (X,Y ) of the Mordell equation Y 2 = X3 + k and
triples (F, x, y), where F is a binary cubic form with
discriminant −108k, and (x, y) are integers satisfying
F (x, y) = 1.

▶ This correspondence allows us to translate problems about
Mordell equation solutions into problems about binary cubic
forms, and vice versa, potentially simplifying certain analyses.

▶ The correspondence preserves algebraic structures, providing a
powerful tool for studying properties of Mordell equation
solutions, such as their finiteness in certain cases.
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Explicit Bounds for Mordell Curves

Theorem
If k is a nonzero integer, then the equation

y2 = x3 + k

has at most 10h3(−108k) solutions in integers x, y where
h3(−108k) is the class number of the binary cubic forms with
discriminant −108k, which is also referred to as the 3-part of class
number of the quadratic field Q(

√
−108k) = Q(

√
−3k).

Note

The class number of a binary quadratic form h(d) is
the number of equivalence classes of binary quadratic
forms with discriminant d.
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Intermediary Lemmas

Lemma (Scholz Reflection Formula)
h3(−3k) ≤ h3(k) + 1

Lemma (Dirichlet’s Class Number Formula)

h(k) =


w
√
|k|

2π
L(1, x), if k < 0;

√
k

ln ε
L(1, x), if k > 0.

where w is the number of automorphisms of quadratic forms of
discriminant k, ε is the fundamental unit of the quadratic field
Q(

√
k), and L(1, χ) is the Dirichlet L function

∑∞
n=1

χ(n)
n .
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Dirichlet’s Class Number Formula and L− Function
Let h(d) for the number of equivalence classes of quadratic forms
with discriminant d. Let χ =

(
d
m

)
be the Kronecker symbol. Then

χ is a Dirichlet character. Write L(s, χ) for the Dirichlet L-series
based on χ. For d > 0, let t > 0, u > 0 be the solution to the Pell
equation t2 − du2 = 4 for which u is smallest, and write

ε =
1

2
(t+ u

√
d)

(Then ε is either a fundamental unit of the real quadratic field
Q(

√
d) or the square of a fundamental unit.) For d < 0, write w

for the number of automorphisms of quadratic forms of
discriminant d. Then, Dirichlet showed that

h(d) =

{
w
√

|d|
2π L(1, χ), d < 0
√
d

2 ln εL(1, χ), d > 0.
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More Intermediary Lemmas
▶ Now in order to achieve effective bounds, we shall divide k

into two cases, k > 0 and k < 0.
▶ Let us define ∆ to be the discriminant of a real quadratic field

Q(
√
k) such that ∆ =

{
k if k ≡ 1 (mod 4)

4k if k ̸≡ 1 (mod 4)
.

▶ Now, Maohua Le (Zhanjiang) proved that for any k ∈ N,
where k is square-free, we have h(k) ≤

⌊√
∆
2

⌋
.

▶ Now for imaginary quadratic fields, the case is a bit trickier,
but luckily, we utilize a combination of bounds to achieve our
desired result. We begin by noting that

w =


2 when k < −4

4 when k = 4

6 when k = −3

=⇒ h(k) =
|k|1/2L(1, χ)

π
for k < −4.
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Explicit Bound Bashing
Theorem (Louboutin)
Let χ be a Dirichlet character modulo q with conductor f . Then, if
χ is even

|L(1, χ)| ≤ 1

2
log f+c1 with c1 =

(
2 + γ − log(4π)

2

)
= 0.023 . . .

and if χ is odd, then

|L(1, χ)| ≤ 1

2
log f + c2 with c2 =

(2 + γ − logπ)
2

= 0.716.

Note

For a Dirichlet character χ modulo q, the conduc-
tor f is the smallest divisor of q such that χ(n)
depends only on n (mod f) for all n coprime to q.
Trivially, we have f ≤ q. 23/29



More Explicit Bound Bashing
▶ Replacing f with q in the above-mentioned bound, we get

L(1, χ) ≤

{
1
2 log q + 0.023 if χ is even,
1
2 log q + 0.716 if χ is odd.

▶ Now, since h3(−3k) ≤ h3(k) + 1 ≤ h(k) + 1 and

h(k) ≤ |k|1/2

π
(0.5 log |k|+ 0.716),

we have

h3(−3k) ≤ |k|1/2

π
(0.5 log |k|+ 0.716) + 1

N(E) ≤ 10

(
|k|1/2

π
(0.5 log |k|+ 0.716) + 1

)
.

▶ But since we want N(E) = |k|, we must have

|k| ≤ 10

(
|k|1/2

π
(0.5 log |k|+ 0.716) + 1

)
=⇒ k ≤ 116
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Final Result

Theorem (Final Result!)
▶ Including the point at infinity: there are precisely three

curves for which N(E) = |k|. These correspond to the cases
k = 3, 8, 17.

▶ Excluding the point at infinity: there are precisely four
curves for which N(E) = |k|, corresponding to the cases
k = −1,−2,−4, 2.

Corollary (Final Result!)
▶ Excluding the point at infinity: there is no curve for which

N(E) = |2k|.
▶ Including the point at infinity: there is only one curve for

which N(E) = |2k|, corresponding to the case k = −1
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Misc Results

We also proved some miscellaneous results!
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Explicit Bounds on Twists of Elliptic Curves

We begin by defining an elliptic curve E : y2 = x3 +Ax+B, with
discriminant ∆ = −16(4A3 + 27B2) > 0 and roots e1 < e2 < e3.
Now, let ΩE denote the real period of E such that

ΩE =

∫ dx
y

=

∫ dx√
x3 +Ax+B

where y > 0.

For n ∈ Z+, let En : y2 = x3 + n2Ax+ n3B be the quadratic
twist on E. Finally, let νE(n) denote the number of integral points
on E∗

n(Z), a subset of EN (Z) with gcd(x, n) = 1, such that

νE(n) = #
{
(x, y) ∈ Z2; y2 = x3 +An2x+Bn3 where gcd(n, x) = 1

}
.
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Explicit Bounds on Twists of Elliptic Curves

Theorem
Let there be an elliptic curve E over R with discriminant ∆ > 0,
which is isomorphic to the Legendre normal form

E(λ) = x(x− 1)(x− λ)

for some λ such that 0 < λ < 1, then

lim
N→∞

1√
N

∑
n≤N

νE(N) ≤ (|∆|1/2 − 1) · (0.5 log |∆|+ 0.716)

4L
(
1,
√
1− λ

)
where L (a, b) is the logarithmic mean of (a, b),

L (a, b) =
b− a

ln b− ln a
.
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Results for Another Family of Elliptic Curves

Theorem
Let t ̸= 2 be an integer such that the fundamental unit ω of the
quadratic field Q

(√
t2 + 4

)
is (t+

√
t2+4)
2 . Then, the elliptic curve

E := y2 = (t2 + 4)x4 − 4 has exactly one integral point. When
t = 2, the elliptic curve has exactly two integral points.
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