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The goal of this talk is to explain the terms and the motivation for
the following theorem.

Theorem (Can-Diaz 2023)
Let Fln denote the variety of full flags of subspaces of the complex
vector space Cn. Then, for n ≥ 5, we have

1 The number of smooth nearly toric Schubert varieties in Fln is

rn := (n−2)F2(n−2).

2 The number of singular nearly toric Schubert varieties in Fln is

bn := 2(2n−7)F2n−8 +(7n−23)F2n−7
5 .

Here, Fm denotes the m-th Fibonacci number.



The sequence of Fibonacci numbers (Fm)m≥0 is defined by the
initial conditions

F0 = 0 and F1 = 1

and the recurrence

Fm = Fm−1 +Fm−2 for m ≥ 2.

Remark
The book Liber Abaci (1202) of Leonardo Pisano appears to be
the first published account of Fibonacci numbers in Europe.
Nevertheless, these numbers were appreciated in India more than a
thousand years earlier than the publication of Liber Abaci. In fact,
it is widely accepted that the Indian poet and mathematician
Acharya Pingala (450 BC-200 BC) was already working with the
Fibonacci numbers to study the patterns in Sanskrit poetry.



It is not surprising that these days we know a lot about the
Fibonacci numbers. Let me write here for completeness some
useful facts about them.

Let F (x) denote the generating series
∑

m≥0Fmxm. It follows from
the basic recurrence of the Fibonacci numbers that

F (x) = x
1− x − x2 .

Let ϕ := 1+
√

5
2 and ψ := 1−

√
5

2 . Then we see that

x
1− x − x2 = x

(1−ϕx)(1−ψx) = 1
1−ϕx −

1
1−ψx .

It follows from the power series expansion that

Fn = ϕn−ψn

ϕ−ψ
= ϕn−ψn

√
5

.



Note that the number ϕ is widely accepted to be the most
eye-pleasing ratio

the length of the long-side
the length of the short side

of an A4 size paper. Indeed, if we have the square

a

b a

Figure: Rectangle with dimensions a and a+b.

Then the ratio a+b
a = a

b yields a
b = ϕ= 1+

√
5

2 .



Next, I would like to discuss patterns in permutations.

A permutation of the set {1,2, . . . ,n} is a self-bijection of the set
{1,2, . . . ,n}. The set of all permutations of {1, . . . ,n} is denoted
by Sn.

Let us call the elements of the set {1,2, . . . ,n} the letters so that
when we list the values of the permutation we get a word:

σ1σ2 . . .σn,

where σj = σ(j) for j = 1, . . . ,n.

A useful “statistic” that is attached to a permutation σ is the total
number of out-of-order values that it takes:

inv(σ) = |{(i , j) | 1≤ i < j ≤ n and σj < σi}.

For example, inv(53142) = 7.



Next, I would like to discuss patterns in permutations.

A permutation of the set {1,2, . . . ,n} is a self-bijection of the set
{1,2, . . . ,n}. The set of all permutations of {1, . . . ,n} is denoted
by Sn.

Let us call the elements of the set {1,2, . . . ,n} the letters so that
when we list the values of the permutation we get a word:

σ1σ2 . . .σn,

where σj = σ(j) for j = 1, . . . ,n.

A useful “statistic” that is attached to a permutation σ is the total
number of out-of-order values that it takes:

inv(σ) = |{(i , j) | 1≤ i < j ≤ n and σj < σi}.

For example, inv(53142) = 7.



Let n and k be two positive integers with k ≤ n. Let τ be a
permutation of {1, . . . ,k}. We call τ the pattern for the moment.

This pattern τ is said to occur in a permutation σ of {1, . . . ,n} if
there are integers 1≤ i1 < i2 < · · ·< ik ≤ n such that for all
1≤ r < s ≤ k we have

τ(r)< τ(s) ⇐⇒ σ(ir )< σ(is).

Example
In S4, there are exactly 10 permutations that contain the pattern
τ = 312:

1423 2413 3124 3142 3412
4123 4132 4213 4231 4312

Note that the entries of the pattern τ need not be adjacent in σ.
Also, the pattern τ may appear multiple times in the same
permutation.



Our previous example shows that there are 24-10= 14
permutations in S4 without the pattern 312 in them. This
phenomenon is called the pattern avoidence. If a pattern τ does
not appear in a permutation σ, then we will say that σ is a
τ -avoiding permutation.

Theorem (Knuth 1962)
The number of 312-avoiding permutations of {1, . . . ,n} is given by
the n-th Catalan number, that is,

cn := 1
n+1

(
2n
n

)
.

Note: cn gives the number of Dyck paths of size n. Here, a Dyck
path of size n is a lattice path in Z2 that starts at (0,0) and ends
at (n,n) moving with (1,0) or (0,1) steps, while staying weakly
above the main diagonal x = y .



Next, we will discuss flag varieties. We need the basic group
theoretic notation. This will be useful when we introduce
“spherical varieties.”

GL(n,C) := {A ∈Mat(n,C) | detA 6= 0}
B(n,C) := {A ∈Mat(n,C) | A is upper triangular}.

Definition
Let Fln denote the set of sequences (Vi)n

i=0 where Vj (for
j ∈ {0, . . . ,n−1}) is a vector subspace of Vj+1, and dimVj = j .
Such a sequence is called a full flag.

Since GL(n,C) acts transitively on Fln, and since B(n,C) stabilizes
the standard full flag

0⊂ 〈e1〉 ⊂ 〈e1,e2〉 ⊂ · · · ⊂ 〈e1, . . . ,en〉,

we identify Fln with the coset space GL(n,C)/B(n,C).



We can represent each permutation as a 0/1 matrix. For example,

51324 


0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1
1 0 0 0 0

 .

With this matrix representation, we can state the remarkable relationship
between the structure of GL(n,C) and that of Fln via B(n,C).

Proposition (A special case of the Bruhat-Chevalley decomposition)

GL(n,C) =
⊔

σ∈Sn

B(n,C) σ B(n,C).

This theorem is a version of the LDPU-decomposition for matrices,
where L (resp. U) stands for a lower triangular (resp. upper triangular)
matrix with 1’s along its main diagonal, D stands for a diagonal matrix,
and P stands for a permutation matrix.



Each double coset B(n,C) σ B(n,C), where σ ∈ Sn, is a subset of
GL(n,C), which is a subset of Mat(n,C). Since Mat(n,C) is
essentially the same space as Cn2 , we may use restrict the topology
from Cn2 to our double cosets. In particular, we can take the
closure of B(n,C) σ B(n,C) in Cn2 , and then send this closed set
to Fln.

Definition
The Schubert variety associated with the permutation σ ∈ Sn is
the image of the closure B(n,C) σ B(n,C) in GL(n,C)/B(n,C)
under the canonical map

π : GL(n,C)→ GL(n,C)/B(n,C).

We will denote it by Xσ.

Remarkably, the dimension of the Schubert variety Xσ is given by
the combinatorial inversion number function:

dimXσ = inv(σ).



The next concept that we want to discuss can be motivated by
some fundamental concepts of harmonic analysis, hence the title of
our talk.

Let us consider the two dimensional sphere

S2 = {(x1,x2,x3) ∈ R3 | x2
1 + x2

2 + x2
3 = 1}.

The special orthogonal group SO(3,R) acts on S2 by rotations.
The stabilizer of the south pole is isomorphic to the subgroup
SO(2,R). In other words, we have the following identification:

S2 ∼= SO(3,R)/SO(2,R).
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A harmonic function f : R3→ C is a solution of the Laplace
equation

∂2f
∂2x + ∂2f

∂2y + ∂2f
∂2z = 0.

We denote by H(S2) the space of all harmonic functions on S2.
Then we have,

H(S2) =
⊕
j≥0
Hj(S2),

where Hj(S2) denotes the vector space spanned by all harmonic
homogeneous polynomial functions of degree j defined on S2.

The summands of this decomposition give all inequivalent,
irreducible representations of SO(n,3). This is a typical example of
a “multiplicity-free” phenomenon.



One lesson we learn from the spherical harmonics is that certain
homogeneous spaces (i.e., coset spaces) might carry exceptional
representation theoretic information.

Building upon this observation, we will now consider a broader
concept, but within the context of general linear groups.

Definition
Let G be a product of finitely many general linear groups of various
sizes. Let X be a (normal) algebraic variety on which G acts
algebraically. If the subgroup of L consisting of all upper triangular
matrices has an open orbit in X , then X is called a spherical
G-variety.

Proposition (Kimelfeld-Vinberg)
Assume that X is affine. Then X is a spherical G-variety if and
only if the ring of regular functions on X has a decomposition into
inequivalent irreducible G-representations, C[X ] =

⊕
ν V (ν).



An important result, obtained separately by Brion and Vinberg is
the following.

Theorem
Let X be a (normal) normal variety on which G acts algebraically.
Let BG denote the subgroup of all upper triangular matrices in G.
Then BG -has an open orbit in X if and only if BG has only finitely
many orbits in X.

Example
Let G :=

∏n
i=1 GL(1,C)∼= (C∗)n. Then, naturally, BG = G . In this

case, X is a spherical G-variety if and only if (C∗)n has an open
orbit in X . These varieties are precisely the toric varieties.



Let us reformulate the definition of the spherical varieties.

Definition
Let X be a (normal) variety on which G acts algebraically. The
G-complexity of the action of G is defined by

cG(X ) := min{codim(BG · x) | x ∈ X}.

The novel definition of our work is defined as follows.
Definition
A spherical G-variety X is called nearly toric if the T -complexity of
X is 1. Here, T stands for the subgroup of G consisting of all
diagonal matrices.

In other words, X is a nearly toric variety iff cG(X ) = 0 and
cT (X ) = 1.



Example
Let X denote the space of degenerate 4×4 skew-symmetric
matrices. Then

X ∼=
2∧
C4 \ GL(4,C) · v ,

where v ∈
∧2C4 is a 2-form in general position. It is well-known

that the following action is a spherical action:

GL(4,C)×X −→ X
(A,B) 7→ ABA>.

It is also easy to see that the restriction of the action of GL(4,C)
to its maximal torus T has (maximal) 4 dimensional orbits. Since
dimX = 5, we see that

cT (X ) = 5−4 = 1.

Therefore, X is a nearly toric GL(4,C)-variety.



We now sketch the proof of our theorem.

There is a pattern avoidance characterization of the permutations
w ∈ Sn such that Xw is a spherical L-variety, where L is the Levi
subgroup of the stabilizer,

L⊂ Stab(Xw ) := {g ∈ GL(n,C) | gXw = Xw}.

The Levi subgroup is isomorphic to a product of the form∏r
i=1 GL(ni ,C), where

∑r
i=0 ni = n.

Lemma (Gao-Hodges-Yong Conjecture, proven by Gaetz, 2022)
The Schubert variety Xw is a spherical L-variety iff w avoids the
following 21 patterns:

P :=


24531 25314 25341 34512 34521 35412 35421
42531 45123 45213 45231 45312 52314 52341
53124 53142 53412 53421 54123 54213 54231

 .
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The T -complexity 1 Schubert varieties have pattern avoidance
characterizations as well.

Lemma (Lee-Masuda-Park 2021)
Let w ∈ Sn. Then

1 Xw is smooth and cT (Xw ) = 1 iff w contains the pattern 3412
exactly once and avoids 321

2 Xw is singular and cT (Xw ) = 1 iff w contains 321 exactly once
and avoids 3412.

Instrumental in the this result of Lee-Park-Masuda is a work of
Daly (around 2010).



Lemma (Daly 2010)
Let An denote the set of permutations w ∈ Sn such that w avoids
3412 contains 321 only once. LetMn denote the set of
permutations w ∈ Sn such that w avoids 3412 contains 321 only
once and w contains 25314. Then |An|= |Mn+2|. Furthermore,
the generating series of an := |An| is given by

∑
n≥3

anxn = x3

(1−3x + x2)2 .

Another result that we used is the following important theorem of
Lakshmibai and Sandhya.

Lemma (Lakshmibai-Sandhya 1990)
Let w ∈ Sn. The Schubert variety Xw is smooth if and only if w
avoids 3412 and 4231.



All of these facts allowed us to prove the following theorem that
led us to the enumeration of nearly toric Schubert varieties.

Theorem (Can-Diaz)
Let w ∈ Sn. Then Xw is a nearly toric Schubert variety iff one of
the following holds:

1 Xw is singular; w contains the pattern 3412 exactly once and
avoids the pattern 321.

2 Xw is smooth; w contains the pattern 321 exactly once and
avoids the following patterns:

P ′ :=


24531 25314 25341 34521 35421
42531 52314 52341 54213 54231
53124 53142 53421 54123 3412

 .

There are many calculations and intermediate steps to discuss, but
we’ve omitted them here.



I want to mention one more combinatorially interesting result that
goes well with the combinatorial aspects of our talk.

Theorem (Can-Diaz 2023)
Let A⊂ Sn denote the set 312-avoding permutations. For w ∈ A,
let π denote the corresponding Dyck path of size n. Then Xw is a
spherical Schubert variety iff π is a spherical Dyck path.

Here, we call a Dyck path π a spherical Dyck path if
• every connected component of π on the first diagonal is either
an elbow or a ledge, or

• every connected component of π on the second diagonal is an
elbow, or a ledge whose E extension is the initial step of a
connected component of π on the first diagonal.
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(a) A ledge or an elbow of π(0).
π(0)

(b) An elbow or a ledge of π(1).

π(1)

Figure: Spherical Dyck paths



THIS IS THE END, UNTIL NEXT TIME.

THANK YOU!


