Metric entropy for bounded variation functions

Prerona Dutta

Department of Mathematics

M@X seminar at Xavier University of Louisiana

February 25, 2025

- Introduction
- 1-D BV functions

- Metric entropy for 1-D BV functions
- An application

Motivation

Consider the first order PDE

$$F(t,x,u,Du) = 0, \ u(0,\cdot) = u_0.$$
 (1)

Given any bounded set of initial data C and T > 0, denote by

$$S_T(C) := \{u(T, \cdot) \mid u \text{ solves } (1) \text{ and } u(0, \cdot) \in C\}$$

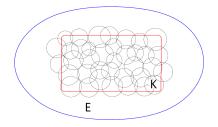
the set of all solutions of (1) with initial data $u_0 \in C$ at time T .

Main Question: Is it possible to measure $S_T(C)$?

Lax's suggestion: Use Kolmogorov ε -entropy

Metric entropy or ε – *entropy*

Let (E, ρ) be a metric space and K be a totally bounded subset of E. For $\varepsilon > 0$, let $\mathcal{N}_{\varepsilon}(K|E)$ be the minimal number of sets in an ε -covering of K.



The ε -entropy of K is defined as

$$\mathcal{H}_{\varepsilon}(K|E) = \log_2 \mathcal{N}_{\varepsilon}(K|E)$$
.

In other words, it is the minimal number of binary digits (bits) needed to represent a point with accuracy ε .

History and Motivation

Introduced by Kolmogorov and Tikhomirov in 1959.

- Application to Probability
- Application to Statistics
- Application to Information Theory

- Application to Dynamical Systems and Biological Models
- Application to PDEs
- Application to Numerical Analysis

Examples of ε -entropy estimates

- $E = \mathbb{R}^d$, $\rho(x,y) = ||x-y||$ and K = B(0,r) for some r > 0

$$d \cdot \log_2\left(\frac{r}{\varepsilon}\right) \leq \mathcal{H}_{\varepsilon}\left(B(0,r)\Big|\mathbb{R}^d\right) \leq d \cdot \log_2\left(\frac{2r}{\varepsilon}+1\right)$$

• **d-dimensional Lipschitz functions**: Let F_d be the set of L-Lipschitz functions (w.r.t $\|\cdot\|_{\infty}$) from $[0,1]^d$ to [0,1]. Then

$$\mathcal{H}_{arepsilon}(F_d|\mathbf{L}^1([0,1]^d,[0,1])) \;pprox \; \left(rac{L}{arepsilon}
ight)^d.$$

Introduction

• 1-D BV functions

• Metric entropy for 1-D BV functions

An application

Bounded variation functions in 1-D

Definition

Given $f:[a,b] \to \mathbb{R}$, let $P = \{a = x_0, x_1, \dots, x_n = b\}$ be a partition of [a,b]. We say that f has bounded total variation or, $f \in BV([a,b],\mathbb{R})$ if it holds that

$$\sup_{P\in\mathcal{P}[a,b]}\sum_{i=1}^n|f(x_i)-f(x_{i-1})|<\infty.$$

In that case, the **total variation of** f **on** [a, b] is defined as

$$TV(f,[a,b]) := \sup_{P \in \mathcal{P}[a,b]} \sum_{i=1}^{n} |f(x_i) - f(x_{i-1})|.$$

Important results on BV functions in 1-D

• If $f:[a,b] \to \mathbb{R}$ is monotone then f is a BV function and

$$TV(f,[a,b]) = |f(b) - f(a)|.$$

- If $f:[a,b] \to \mathbb{R}$ is differentiable having a bounded derivative, then it is a BV function.
- If $f:[a,b] \to \mathbb{R}$ is a BV function, it can be expressed as a **difference** of two nondecreasing functions.

Given L, M, V > 0, we define

$$\mathcal{B}_{[L,M,V]} = \left\{ f: [0,L] \to [0,M] \;\middle|\; TV(f,[0,L]) \; \leq \; V \right\}.$$

Helly's Theorem

 $\mathcal{B}_{[L,M,V]}$ is compact in $\mathbf{L}^1([0,L],[0,M])$.

- Introduction
- 1-D BV functions

- Metric entropy for 1-D BV functions
- An application

Entropy in L^1 for a class of nondecreasing functions

For L, M > 0, define

$$\mathcal{I}_{L,M} := \{w : [0,L] \rightarrow [0,M] \mid w \text{ is nondecreasing} \}.$$

Lemma (De Lellis and Golse, Comm. Pure Appl. Math., 2005)

For $0 < \varepsilon \leq \frac{LM}{6}$, it holds that

$$\mathcal{H}_{\varepsilon}\left(\mathcal{I}_{L,M} \mid \mathbf{L}^{1}([0,L])\right) \leq 4 \cdot \left\lceil \frac{LM}{\varepsilon} \right\rceil.$$

Main Result

Given L, M, V > 0, we define

$$\mathcal{B}_{[L,M,V]} \ = \ \left\{ f: [0,L] \rightarrow [0,M] \ \middle| \ \mathit{TV}(f,[0,L]) \ \leq \ V \right\} \, .$$

Theorem (D- and Nguyen, J. Math. Anal. Appl., 2018)

For all $0 < \varepsilon < \frac{L(M+V)}{6}$, it holds that

$$\mathcal{H}_{\varepsilon}\left(\mathcal{B}_{[L,M,V]}|\mathbf{L}^{1}([0,L])\right) \leq 8 \cdot \left\lceil \frac{L(M+V)}{\varepsilon} \right\rceil.$$

Proof of the theorem (I)

Step 1: For any $f \in \mathcal{B}_{[L,M,V]}$, define the function $V_f(x) = TV(f,[0,x])$.

Step 2: Decompose f as $f(x) = f^+(x) - f^-(x)$ for all $x \in [0, L]$ where

$$f^- = \frac{V_f - f}{2} + \frac{M}{2}$$

is a nondecreasing function from [0,L] to $\left[0,\frac{V+M}{2}\right]$ and

$$f^+ = \frac{V_f + f}{2} + \frac{M}{2}$$

is a nondecreasing function from [0,L] to $\left[\frac{M}{2},\frac{V+2M}{2}\right]$. Define

$$\mathcal{I} := \left\{ g: [0,L] \to \left[0, \frac{V+M}{2}\right] \; \middle| \; g \text{ is nondecreasing} \right\} \,.$$

Proof of the theorem (II)

Step 3: Observe that

$$\mathcal{B}_{[L,M,V]} \subseteq \left(\mathcal{I} + \frac{M}{2}\right) - \mathcal{I} := \left\{g - h \mid g \in \mathcal{I} + \frac{M}{2} \text{ and } h \in \mathcal{I}\right\}.$$
 (2)

Then for any $\varepsilon > 0$, we claim that

$$\mathcal{N}_{\varepsilon}\left(\mathcal{B}_{[L,M,V]}\mid \mathbf{L}^{1}([0,L])\right) \leq \left[\mathcal{N}_{\frac{\varepsilon}{2}}(\mathcal{I}\mid \mathbf{L}^{1}([0,L]))\right]^{2}.$$

Proof of the claim: Let $\mathcal{G}_{\frac{\varepsilon}{2}}$ be an $\frac{\varepsilon}{2}$ -covering of \mathcal{I} in $\mathbf{L}^1([0,L])$. By definition, this means

$$\mathcal{I} \subseteq \bigcup_{\mathcal{E} \in \mathcal{G}_{\frac{\varepsilon}{h}}} \mathcal{E} \quad \text{and} \quad \operatorname{diam}(\mathcal{E}) = \sup_{h_1,h_2 \in \mathcal{E}} \|h_1 - h_2\|_{L^1([0,L])} \leq \varepsilon.$$

Thus, (2) implies
$$\mathsf{B}_{[L,M,V]} \subseteq \bigcup_{(\mathcal{E}_1,\mathcal{E}_2) \in \mathcal{G}_{\frac{c}{2}} \times \mathcal{G}_{\frac{c}{2}}} \left[\left(\mathcal{E}_1 + \frac{M}{2} \right) - \mathcal{E}_2 \right]$$
.

Proof of the theorem (III)

For any two functions

$$f_i = g_i - h_i \in \left(\mathcal{E}_1 + \frac{M}{2}\right) - \mathcal{E}_2 \quad \text{for } i = 1, 2,$$

we have

$$\begin{split} \|f_1 - f_2\|_{\mathsf{L}^1([0,L])} & \leq \|g_1 - g_2\|_{\mathsf{L}^1([0,L])} + \|h_1 - h_2\|_{\mathsf{L}^1([0,L])} \\ & \leq \operatorname{diam}\left(\mathcal{E}_1 + \frac{M}{2}\right) + \operatorname{diam}(\mathcal{E}_2) \leq \varepsilon + \varepsilon = 2\varepsilon \end{split}$$

and this implies that

$$\operatorname{diam}\left[\left(\mathcal{E}_1 + \frac{M}{2}\right) - \mathcal{E}_2\right] \leq 2\varepsilon.$$

Therefore,

$$\mathcal{N}_{\varepsilon}\left(\mathcal{B}_{[L,M,V]} \mid \mathbf{L}^{1}([0.L])\right) \leq \left[\mathcal{N}_{\frac{\varepsilon}{2}}(\mathcal{I} \mid \mathbf{L}^{1}([0,L]))\right]^{2}.$$

Proof of the theorem (IV)

Step 4: From Step 3, by the definition of metric entropy it follows that

$$\mathcal{H}_{\varepsilon}\left(\mathcal{B}_{[L,M,V]} \;\middle|\; \mathbf{L}^{1}([0,L])\right) \;\leq\; 2\cdot\mathcal{H}_{\frac{\varepsilon}{2}}\left(\mathcal{I} \;\middle|\; \mathbf{L}^{1}([0,L])\right) \;. \tag{3}$$

Step 5: Applying De Lellis and Golse's entropy estimate for \mathcal{I} , , we get

$$\mathcal{H}_{\frac{\varepsilon}{2}}\left(\mathcal{I}\mid \mathbf{L}^{1}([0,L])\right) \leq 4\cdot \left\lfloor \frac{L(M+V)}{\varepsilon} \right\rfloor,$$

for any $0 < \varepsilon < \frac{L(M+V)}{6}$ and then (3) yields

$$\mathcal{H}_{\varepsilon}\left(\mathcal{B}_{[L,M,V]}|\mathbf{L}^{1}([0,L])\right) \leq 8 \cdot \left\lceil \frac{L(M+V)}{\varepsilon} \right\rceil.$$

- Introduction
- 1-D BV functions

- Metric entropy for 1-D BV functions
- An application

Metric entropy for multi-dimensional BV functions

Given $u \in \mathbf{L}^1(\Omega, \mathbb{R})$ where $\Omega \subset \mathbb{R}^d$ is open, we say that u is of bounded variation on Ω , i.e., $u \in BV(\Omega, \mathbb{R})$ if

$$\int_{\Omega} u \cdot \frac{\partial \varphi}{\partial x_i} dx = -\int_{\Omega} \varphi dD_i u \quad \text{for all } \varphi \in \mathcal{C}^1_c(\Omega, \mathbb{R}), \ i \in \{1, 2, ..., d\}$$

for some finite Radon measure $Du = (D_1u, D_2u, ..., D_du)$.

Let the set of BV functions be denoted by

$$\mathcal{F}_{[L,M,V]} = \left\{ u \in \mathbf{L}^{1}([0,L]^{d},\mathbb{R}) \mid \|u\|_{\mathbf{L}^{\infty}([0,L]^{d})} \leq M, \ TV(u,[0,L]^{d}) \leq V \right\}.$$

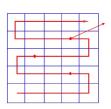
Theorem (D - and Nguyen, J. Math. Anal. Appl., 2018)

Given L, M, V > 0, for every $0 < \varepsilon < \frac{ML^d}{8}$, it holds that

$$\begin{split} \frac{\log_2(e)}{8} \cdot \left\lfloor \frac{LV}{2^{d+2}\varepsilon} \right\rfloor^d &\leq & \mathcal{H}_{\varepsilon} \left(\mathcal{F}_{[L,M,V]} \mid \mathbf{L}^1([0,L]^d,\mathbb{R}) \right) \\ &\leq & \frac{1}{\varepsilon^d} \left\lceil \frac{8}{\sqrt{d}} \left(4\sqrt{d}LV \right)^d + \left(\frac{2^{d+7}V}{M} + 8 \right) \cdot \left(\frac{ML^d}{8} \right)^d \right\rceil \,. \end{split}$$

Sketch of the Proof

Upper estimate:

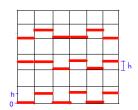


$$u_{\iota} = \frac{1}{\operatorname{Vol}(\square_{\iota})} \int_{\square_{\iota}} u(x) dx$$

$$\tilde{u}(x) = \begin{cases} u_{\iota} & \text{for all } x \in \operatorname{int}(\square_{\iota}), \\ \\ 0 & \text{for all } x \in \bigcup_{\iota \in \{0,1,\dots,N-1\}^{n}} \partial \square_{\iota}. \end{cases}$$

Lower estimate:

Step function:



Thank you for your attention!