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Motivation

Consider the first order PDE

F (t, x , u,Du) = 0, u(0, ·) = u0 . (1)

Given any bounded set of initial data C and T > 0, denote by

ST (C ) := {u(T , ·) | u solves (1) and u(0, ·) ∈ C}

the set of all solutions of (1) with initial data u0 ∈ C at time T .

Main Question: Is it possible to measure ST (C )?

Lax’s suggestion: Use Kolmogorov ε-entropy
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Metric entropy or ε− entropy

Let (E , ρ) be a metric space and K be a totally bounded subset of E . For ε > 0,
let Nε(K

∣∣E ) be the minimal number of sets in an ε-covering of K .

The ε-entropy of K is defined as

Hε(K |E ) = log2Nε(K |E ) .
In other words, it is the minimal number of binary digits (bits) needed to
represent a point with accuracy ε.
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History and Motivation

Introduced by Kolmogorov and Tikhomirov in 1959.

Application to Probability

Application to Statistics

Application to Information
Theory

Application to Dynamical
Systems and Biological Models

Application to PDEs

Application to Numerical
Analysis
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Examples of ε-entropy estimates

E = R, K = [0, L]

Nε([0, L]|R) ≈
L

2ε
and Hε([0, L]|R) ≈ −log2(ε)

E = Rd , ρ(x , y) = ∥x − y∥ and K = B(0, r) for some r > 0

d · log2
( r
ε

)
≤ Hε

(
B(0, r)

∣∣∣Rd
)

≤ d · log2
(
2r

ε
+ 1

)
d-dimensional Lipschitz functions: Let Fd be the set of L-Lipschitz
functions (w.r.t ∥ · ∥∞) from [0, 1]d to [0, 1]. Then

Hε(Fd |L1([0, 1]d , [0, 1])) ≈
(
L

ε

)d

.
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Bounded variation functions in 1-D

Definition

Given f : [a, b] → R, let P = {a = x0, x1, · · · , xn = b} be a partition of
[a, b]. We say that f has bounded total variation or, f ∈ BV ([a, b],R)
if it holds that

sup
P∈P[a,b]

n∑
i=1

|f (xi )− f (xi−1)| < ∞ .

In that case, the total variation of f on [a, b] is defined as

TV (f , [a, b]) := sup
P∈P[a,b]

n∑
i=1

|f (xi )− f (xi−1)| .
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Important results on BV functions in 1-D

If f : [a, b] → R is monotone then f is a BV function and

TV (f , [a, b]) = |f (b)− f (a)| .

If f : [a, b] → R is differentiable having a bounded derivative, then it
is a BV function.

If f : [a, b] → R is a BV function, it can be expressed as a difference
of two nondecreasing functions.

Given L,M,V > 0, we define

B[L,M,V ] =
{
f : [0, L] → [0,M]

∣∣∣ TV (f , [0, L]) ≤ V
}
.

Helly’s Theorem

B[L,M,V ] is compact in L1([0, L], [0,M]).
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Entropy in L1 for a class of nondecreasing functions

For L,M > 0, define

IL,M := {w : [0, L] → [0,M]
∣∣ w is nondecreasing} .

Lemma (De Lellis and Golse, Comm. Pure Appl. Math., 2005)

For 0 < ε ≤ LM
6 , it holds that

Hε

(
IL,M

∣∣ L1([0, L])) ≤ 4 ·
[
LM

ε

]
.
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Main Result

Given L,M,V > 0, we define

B[L,M,V ] =
{
f : [0, L] → [0,M]

∣∣∣ TV (f , [0, L]) ≤ V
}
.

Theorem (D- and Nguyen, J. Math. Anal. Appl., 2018)

For all 0 < ε < L(M+V )
6 , it holds that

Hε

(
B[L,M,V ]|L1([0, L])

)
≤ 8 ·

[
L(M + V )

ε

]
.
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Proof of the theorem (I)

Step 1: For any f ∈ B[L,M,V ], define the function Vf (x) = TV (f , [0, x ]).

Step 2: Decompose f as f (x) = f +(x)− f −(x) for all x ∈ [0, L] where

f − =
Vf − f

2
+

M

2

is a nondecreasing function from [0, L] to
[
0, V+M

2

]
and

f + =
Vf + f

2
+

M

2

is a nondecreasing function from [0, L] to
[
M
2 ,

V+2M
2

]
. Define

I :=

{
g : [0, L] →

[
0,

V +M

2

] ∣∣∣∣∣ g is nondecreasing

}
.

Prerona Dutta (XULA) BV functions February 25, 2025 13 / 20



Proof of the theorem (II)

Step 3: Observe that

B[L,M,V ] ⊆
(
I +

M

2

)
− I :=

{
g − h

∣∣∣ g ∈ I +
M

2
and h ∈ I

}
.

(2)
Then for any ε > 0, we claim that

Nε

(
B[L,M,V ] | L1([0, L])

)
≤

[
N ε

2
(I | L1([0, L]))

]2
.

Proof of the claim: Let G ε
2
be an ε

2 -covering of I in L1([0, L]). By
definition, this means

I ⊆
⋃

E∈G ε
2

E and diam(E) = sup
h1,h2∈E

∥h1 − h2∥L1([0,L]) ≤ ε.

Thus, (2) implies B[L,M,V ] ⊆
⋃

(E1,E2)∈G ε
2
×G ε

2

[(
E1 + M

2

)
− E2

]
.

Prerona Dutta (XULA) BV functions February 25, 2025 14 / 20



Proof of the theorem (III)

For any two functions

fi = gi − hi ∈
(
E1 +

M

2

)
− E2 for i = 1, 2 ,

we have

∥f1 − f2∥L1([0,L]) ≤ ∥g1 − g2∥L1([0,L]) + ∥h1 − h2∥L1([0,L])

≤ diam

(
E1 +

M

2

)
+ diam(E2) ≤ ε+ ε = 2ε

and this implies that

diam

[(
E1 +

M

2

)
− E2

]
≤ 2ε .

Therefore,

Nε

(
B[L,M,V ]

∣∣∣ L1([0.L])) ≤
[
N ε

2
(I | L1([0, L]))

]2
.
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Proof of the theorem (IV)

Step 4: From Step 3, by the definition of metric entropy it follows that

Hε

(
B[L,M,V ]

∣∣∣ L1([0, L])) ≤ 2 · H ε
2

(
I
∣∣∣ L1([0, L])) . (3)

Step 5: Applying De Lellis and Golse’s entropy estimate for I, , we get

H ε
2

(
I
∣∣ L1([0, L])) ≤ 4 ·

⌊
L(M + V )

ε

⌋
,

for any 0 < ε < L(M+V )
6 and then (3) yields

Hε

(
B[L,M,V ]|L1([0, L])

)
≤ 8 ·

[
L(M + V )

ε

]
.
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Metric entropy for multi-dimensional BV functions

Given u ∈ L1(Ω,R) where Ω ⊂ Rd is open, we say that u is of bounded variation
on Ω, i.e., u ∈ BV (Ω,R) if∫

Ω

u · ∂φ
∂xi

dx = −
∫
Ω

φdDiu for all φ ∈ C1
c (Ω,R), i ∈ {1, 2, ..., d}

for some finite Radon measure Du = (D1u,D2u, ...,Ddu).

Let the set of BV functions be denoted by

F[L,M,V ] =
{
u ∈ L1([0, L]d ,R)

∣∣∣ ∥u∥L∞([0,L]d ) ≤ M, TV (u, [0, L]d) ≤ V
}

.

Theorem (D - and Nguyen, J. Math. Anal. Appl., 2018)

Given L,M,V > 0, for every 0 < ε < MLd

8
, it holds that

log2(e)

8
·

⌊
LV

2d+2ε

⌋d

≤ Hε

(
F[L,M,V ] | L1([0, L]d ,R)

)
≤ 1

εd

[
8√
d

(
4
√
dLV

)d

+

(
2d+7V

M
+ 8

)
·
(
MLd

8

)d
]
.
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Sketch of the Proof

Upper estimate:

uι = 1

Vol
(

ι

) ∫
ι

u(x) dx

ũ(x) =


uι for all x ∈ int

(
ι

)
,

0 for all x ∈
⋃

ι∈{0,1,...,N−1}n
∂ ι .

Lower estimate:

Step function :
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Thank you

for your attention!
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