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Introduction

A guess by Ramanujan (Vol 1V, p.310, Entry 22)
Entry 22 (p. 318). Formally,

r oo § 2 @2.1)
o

It is doubtful that Ramanujan intended Entry 22 to be anything more
than a proposed equality for which he probably tried to find examples. In
Chapter 13 (Part II [4, pp. 226-227]), Ramanujan briefly considered a similar
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Consider the integrals

o X sin x
d ] =
/Rgsmc <2i+ 1) x,  sinc(x) x
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1. . Berry;s first proof.* This is that expressed by the series of equations
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Dirac distribution
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Borwein's integrals: the probabilistic approach

With {Xj}, <<, independent random variables, with characteristic
functions 1; (x) = Ee*?™X,

I:/IRsinc(agx)Jl:[l¢j (ajx) dx

Using Parseval identity with Z = ijzl aj X,

I:ﬂ/ll[ 0 2 01(2) fz (2) dz

Assuming each X; has bounded support [ 5 %] , and
ZJ 1 3j < ao,

I:W/fz(z)dz:ﬂ
R
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In Borwein's case
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The proof suggests this result holds for any random variable X;
with bounded support [ o1 2} Take for example
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Borwein's integrals: geometric interpretation

Borwein's integral is a probability: with U; uniform over [—1,1],

1 n
/Hsinc(a,-x)dx_Pr{|alU1+...a,,U,,\ < ao}
T IR

The support of the random variable Z =" ; a;U; is

n n
Y3
i=1 i=1
As long as

n
E aj < ag
i=1

Pr{lasUi +...a,Up| < a0} = 1.



Borwein's integrals: geometric interpretation
Borwein's integral is a volume, a result due to Polya (1912)

l /Oo M Hsinc(w,-x) dx = Vol ([-1,1]" N Sy.0)

TJ—o0 i=1

with p
SW,O = {X € Rn . |WX| S 5}
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Another remarkable identity: assuming k; > 0 and
ki + -+ km < 2m,

Proof:
/ Hsmc kix) dx = / Ee™ 2 kUi gx
Ry R
V4
—E/ 225 kUi g IE(S( )
R 2T
with .
Z=> kU
j=1
and finally



Bernoulli's sophomore's dream

In 1697, Bernoulli 2 found that

/ Xdx =) | S5 =0.783431...
0

k>1

2 Johan Bernoulli, Demonstratio Methodi Analyticae, qua usus est pro
determinanda aliqua Quadratura exponentiali per seriem, Actis Eruditorum A
(1697), p. 131.



Bernoulli's sophomore's dream

In 1697, Bernoulli 2 found that

/ Xdx =) | S5 =0.783431...
0

k>1

Alternatively

— X—Z k—129128
k>1

2 Johan Bernoulli, Demonstratio Methodi Analyticae, qua usus est pro
determinanda aliqua Quadratura exponentiali per seriem, Actis Eruditorum A
(1697), p. 131.
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Not difficult to prove:

1 1 1 1 (_1)n
—dx —/ e xlogxgx —/ Zix" log" xdx
0 XX 0 0 n!

n>0
—1)" L
:Z( |) / x" log" xdx
>0 n: 0
with ) .
—1)"n!
Ih = / x"log" xdx = %
0 (n+1)
so that

e N e I
—ax = _— = _
0Xx (n+1)n+1 nn

n>0 n>1
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Compute I, considering K, (o« = 0) with

1 N dn 1 N
Kn (o) = / X" log" xdx = / X" dx
0 da” Jo

o d” 1 B (=1)"n!
Cda"n+a+1 (n_|_a_|_]_)”+1
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10221121

"THE ON-LINE ENCYCLOPEDIA
% OF INTEGER SEQUENCES®

founded in 1964 by N. J. A. Sloane
Search  Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)

A073009
1, 2, 9,
5, 6, 0,
2, 4, 4,
1, 1, 2,
OFFSET
LINKS

FORMULA

Dec

imal expansion of Sum_{n >= 1} 1/n’n.

1, 2,8,5,9,9,7,0,6,2,6,6,3,5,4,0,4,0,7,2,8,2,5,9,0,5,9,
0, 5,4,1,4,9,8,6,1,9,3,6,8,2,7, 4,5,2,2,3,1,7,3,1,0,0,0,
5,1, 3,6,9,4,4,5,3,8,7,6,5,2,3,4,4,5,5 5,5,8,8,1,7, 0,4,
9, 4, 2, 9, 7, 0, 8, 9, 8, 4, 9, 9 (list; constant; graph; refs; listen; history; text; internal format

1,2
Kenny Lau, Table of n, a(n)_for n = 1..10001
Johan Bernoulli, Demonstratio Methodi Analyticae, qua usus est pro

determinanda aliqua Quadratura exponentiali per seriem, Actis Eruditorum A

(1697), p. 131. Collected in Opera Omnia, vol. 3, 1742. See p. 376ff.
M. L. Glasser, A note on Beukers's and related integrals, Amer. Math.
Monthly 126(4) (2019), 361-363.

Jaroslav Han¢l and Simon Kristensen, Metrical irrationality results related

to values of the Riemann zeta-function, arXiv:1802.03946 [math.NT], 2018.

Randall Munroe, Approximations, xkcd Web Comic #1047, Apr 25 2012.

Simon Plouffe, Sum(l/n”n, n=1..infinity). [internet archive]

Eric Weisstein's World of Mathematics, Power Tower.

Eric Weisstein's World of Mathematics, Sophomore's Dream.

Equals Integral_{x = 0..1} dx/x"x.

Constant also equals the double integral Integral_ {y = 0..1} Integral {x =
0..1} 1/(x*y)”"(x*y) dx dy. - Peter Bala, Mar 04 2012

Approximately log(3)"e, see Munroe link. - Charles R Greathouse IV, Apr 25
2012

48
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It was suggested (OEIS A073009) that

1
Zk_k:/x_xdxz// (
k>1 0 [0,1]?
Easy proof:
(xy) ™ dxdy =
//[071]2 kJZ>1 (k+1—
because

Z k+/ k+/ Z

JI>1

xy) Y dxdy

k+l Z kk

k>1

1
L

p>1
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Another way: use Glasser's theorem

1
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3M. L. Glasser, A Note on Beukers's and Related Double Integrals, The
American Mathematical Monthly Volume 126, 2019 - Issue 4
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Another way: use Glasser's theorem

1
// f (xy) dxdy = —/ f (x) log xdx
[0,1]? 0

With f(x) = x=*

1
// f (xy) dxdy = —/ x*log xdx
[0,1]? 0

d
dx

0
——~
1 1 1
// (xy)™¥ dxdy = —/ x "~ log xdx :/ X_XdX+/ iX_de
[0,1] 0 0 o dx

3M. L. Glasser, A Note on Beukers's and Related Double Integrals, The
American Mathematical Monthly Volume 126, 2019 - Issue 4

34

and since
x X =x""(-1-logx),

— log x)"~ 1

7(,1 i dx.

“*a special case of f[o,l]" f(x1...xn)dxy...dx, = fo f(x)
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» extend

1
—X —X § 1
//[0 12 by )™ dedy = /o = Kk
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» extend
/] R
(xy) ™ dxdy = / xdx =) 0%
[0,1]? 0 k>1 k
to
(‘577
// p (1. p) 0P dxy L dxp = Z kkp+p—1
[0.1] k>1
» extend 1
//[o 12 X dxdy = Z kk+1
’ kzl
to

_ 1
X1...X .
//[071],) Xl de]_ e pr = E W

k>1
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» study the properties of

C(P):Z#

k>1

as compared to those of the Riemann zeta function

1
Cr(p) = Z P
k>1
» prove
lim ¢((p) =1

p—00
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5H.M. Srivastava and J. Choi, zeta and g-zeta functions and associated
series and integrals, 2012, Elsevier
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» what is the equivalent of

> (Cr(p)-1)=1

p=>2

» what is the equivalent of

( 1><R (2n) ZCR (2m) Cgr (2n — 2m)

» or of one of the 464 identities in °

5H.M. Srivastava and J. Choi, zeta and g-zeta functions and associated
series and integrals, 2012, Elsevier
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r -1 1
Z _L

22k 6

c(2k+1) —
Z

4
Y ——§+210g2;

1
k — .
E =DHek) -1} = X

k=2

D k-11=1;

k=2

& 3
Y @b -1=73

k=1

& 1
{¢Rk+1)—1}=—;

k=2

& 3\* 31
Z(—l)k{ak)—l}(i) =2 3iog2;

(211)

(212)

213)

(214)

(215)

(216)

217)
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» an equivalent of the Multiple Zeta Value

1 1

p,g=0 q=p=>0

would be

1
- Xy dxd
2 (p+ 1) (p+q+1)7 //[0,1]2 i

p,q>0
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» a hand to hand combat: PSLQ

> Wolfram Alpha:
Identify[3.141592653]

returns
Pi

» Mathematica:

FindIntegerNullVector[{Log[2], Log[4]]})

returns

{_27 1}
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FROM THE MAKERS OF WOLFRAM LANGUAGE AND MATHEMATICA

% WolframAlpha

[ Identify[3.141592653] E]

% NATURAL LANGUAGE | [f5 MATH INPUT B EXTENDED KEYBOARD 33} EXAMPLES # UPLOAD 4 RANDOM

Input interpretation

3.14159 closed form

Possible closed forms More
x = 3.14159265358979324

V6{(2) ~3.14159265358979324

1
—— = 3.14159265358979324
2P,

& Download Page POWERED BY THE WOLFRAM LANGUAGE
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1
c(y=>" 1F = 1:291285097062663540407 ...
k>1
1660 + 550,/ — 157 — 167+/7 + 1487
9767
— 1.291285997062663540399 . . .

1 1
B —5 D 7% = 0.1080968136842469640436
™

2
k>1
5 (16 — 3157 + 9872)

T T1116 — 2777 + 572 = 0.1080968136842469636049
27771 + 51




A bonus identity

the sum of digits function: with the base 2 expansion
n=ngng_1...ng, nje{0,1},
meaning

k
n:::§£:2fnh
Jj=0

define



A bonus identity

For example,

52 (9) = S (1001) =2.

We have the three identities

I

n>1

3
4

1

1+% 1+2n+2>_
1 1 -

1++5 1+3;

n>1

1
+ 4n+4

1 s2(n)
H 1+% 1+2n+2 :W
14+ -4 145 2

I 1+4 1
1+ 52

n>1 2n+2

1+ 4

+1

s2(n) =
)= T (45) =



A bonus identity

Mathematica evaluates

I] tanh (kg) — 0.91357913815611682141 . ..
k=1

numerically only. However with g = e™™,

[ tanh <kg) =0 (0,e™) = (6% %) _ (9:4°)° .
k=1



Jacobi theta functions

nez

02 (q) =3 q3)’

neZ

with the factorization (Jacobi triple product identity)

04 (q) = Z(—l)"q”2 = H (1 _ q2m) (1 _ qzm_1)2

neZ m>1

— () (3:6)°



A bonus identity

™

Proof: with g =e™ 2

Htanh( ) Hi—T—Z

and since
= 1 - 2k+1
| | — | | 1—gq
k )
k=1 1 + q k=0
we deduce

[Teon (43) =TT (- ) (1= )

_ ﬁ (1 _ q2k+1> <1 B q2k+2> (1 _ q2k+1) _ (q2’ qz)oo (q, qz)io

k=0






Approximating [, tanh (kg) — 0.91357913815611682

This produces the series representation

H tanh ( ) Z( 1)”e_7”72 =0,(e ")

neZ

and the approximation ©

1 —2e ™ 4 2e %" =0.91357913815716791844

By modularity, we have
94 (e—ﬂ') — Z n —7rn Z e—7r n+ _ 92 (e—w)
neZ neZ

with the approximation

3\2

e‘”(i) + e—”(—g)2 + e—”(%)2 + e—”(

N[

P ge
= 4e "2 coshm

= 0.91357913221760278960
STI5_, tanh (k2 ) = 0.91357915059276074




