Cauchy's Integral Formula as an Act of Combinatorics II: Electric Boogaloo

Charles Burnette

Department of Mathematics Xavier University of Louisiana

XULA M@X Seminar

 "A generating function is a clothesline on which we hang up a sequence of numbers for display." – Herbert Wilf

- "A generating function is a clothesline on which we hang up a sequence of numbers for display." – Herbert Wilf
- Suppose $a_0, a_1, a_2, ...$ is a given sequence of numbers. The formal power series

$$f(z) = a_0 + a_1 z + a_2 z^2 + \cdots$$

is called the **ordinary generating function** (OGF) of the sequence $\{a_n\}_{n=0}^{\infty}$.

- "A generating function is a clothesline on which we hang up a sequence of numbers for display." – Herbert Wilf
- Suppose $a_0, a_1, a_2, ...$ is a given sequence of numbers. The formal power series

$$f(z) = a_0 + a_1 z + a_2 z^2 + \cdots$$

is called the **ordinary generating function** (OGF) of the sequence $\{a_n\}_{n=0}^{\infty}$.

 (By formal, we mean that the sum is considered without regard to convergence conditions.)

- "A generating function is a clothesline on which we hang up a sequence of numbers for display." – Herbert Wilf
- Suppose $a_0, a_1, a_2, ...$ is a given sequence of numbers. The formal power series

$$f(z) = a_0 + a_1 z + a_2 z^2 + \cdots$$

is called the **ordinary generating function** (OGF) of the sequence $\{a_n\}_{n=0}^{\infty}$.

- (By formal, we mean that the sum is considered without regard to convergence conditions.)
- Example: The OGF of $a_n = 1$ is $f(x) = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$.

 OGFs aid in derivation, especially when the series has a closed form or coincides with an elementary function.

- OGFs aid in derivation, especially when the series has a closed form or coincides with an elementary function.
- If the coefficients of an OGF "count" the number of some "unlabelled" discrete structure, then the algebra of formal power series can directly be interpreted into combinatorial statements about the structure.

- OGFs aid in derivation, especially when the series has a closed form or coincides with an elementary function.
- If the coefficients of an OGF "count" the number of some "unlabelled" discrete structure, then the algebra of formal power series can directly be interpreted into combinatorial statements about the structure.
- "A generating function is a device somewhat similar to a bag. Instead of carrying many little objects detachedly, which could be embarrassing, we put them all in a bag, and then we have only one object to carry, the bag." – George Polya

Example: The Catalan Numbers

■ The Catalan numbers (which count full binary trees, polygon triangulations, etc.) satisfy Segner's recurrence relation

$$c_0=1$$
 and $c_{n+1}=\sum_{j=0}^n c_j c_{n-j}$ for $n\geq 0$.

Example: The Catalan Numbers

■ The Catalan numbers (which count full binary trees, polygon triangulations, etc.) satisfy Segner's recurrence relation

$$c_0=1$$
 and $c_{n+1}=\sum_{j=0}^n c_j c_{n-j}$ for $n\geq 0$.

If we let C(x) denote the OGF for the Catalan numbers, the above recurrence yields

$$C(x) = \sum_{n=0}^{\infty} c_n x^n = c_0 + \sum_{n=0}^{\infty} c_{n+1} x^{n+1} = 1 + x \sum_{n=0}^{\infty} \sum_{j=0}^{n} c_j c_{n-j} x^n$$

Example: The Catalan Numbers

■ The Catalan numbers (which count full binary trees, polygon triangulations, etc.) satisfy Segner's recurrence relation

$$c_0=1$$
 and $c_{n+1}=\sum_{j=0}^n c_j c_{n-j}$ for $n\geq 0$.

If we let C(x) denote the OGF for the Catalan numbers, the above recurrence yields

$$C(x) = \sum_{n=0}^{\infty} c_n x^n = c_0 + \sum_{n=0}^{\infty} c_{n+1} x^{n+1} = 1 + x \sum_{n=0}^{\infty} \sum_{j=0}^{n} c_j c_{n-j} x^n$$

■ So $C(x) = 1 + xC(x)^2$. Solving for C(x) and using the fact that $c_0 = 1$ gives us that $C(x) = \frac{1 - \sqrt{1 - 4x}}{2x}$.

■ Sometimes, it is more convenient to work with the OGF of the sequence $\{a_n/n!\}_{n=0}^{\infty}$, which is

$$g(z) = \sum_{n=0}^{\infty} a_n \frac{z^n}{n!}.$$

■ Sometimes, it is more convenient to work with the OGF of the sequence $\{a_n/n!\}_{n=0}^{\infty}$, which is

$$g(z) = \sum_{n=0}^{\infty} a_n \frac{z^n}{n!}.$$

■ This is called the **exponential generating function** (EGF) of the sequence $\{a_n\}_{n=0}^{\infty}$.

■ Sometimes, it is more convenient to work with the OGF of the sequence $\{a_n/n!\}_{n=0}^{\infty}$, which is

$$g(z) = \sum_{n=0}^{\infty} a_n \frac{z^n}{n!}.$$

- This is called the **exponential generating function** (EGF) of the sequence $\{a_n\}_{n=0}^{\infty}$.
- EGFs are used to count "labelled" discrete structures.

■ Sometimes, it is more convenient to work with the OGF of the sequence $\{a_n/n!\}_{n=0}^{\infty}$, which is

$$g(z) = \sum_{n=0}^{\infty} a_n \frac{z^n}{n!}.$$

- This is called the **exponential generating function** (EGF) of the sequence $\{a_n\}_{n=0}^{\infty}$.
- EGFs are used to count "labelled" discrete structures.
- When valuation is desired, the presence of the fast-growing factorials in the denominator helps ensure the convergence of the EGE.

Examples of EGFs

■ The EGF of $a_n = 1$ is

$$g(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x.$$

Examples of EGFs

■ The EGF of $a_n = 1$ is

$$g(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x.$$

Note: This series converges for all x, whereas the OGF $f(x) = \frac{1}{1-x}$ has a radius of convergence of 1.

Examples of EGFs

■ The EGF of $a_n = 1$ is

$$g(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x.$$

- Note: This series converges for all x, whereas the OGF $f(x) = \frac{1}{1-x}$ has a radius of convergence of 1.
- The EGF of $b_n = n!$ (a.k.a. the number of permutations of n distinct objects) is

$$h(x) = \sum_{n=0}^{\infty} n! \frac{x^n}{n!} = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}.$$

• We use the notation $[x^n]F(x)$ to extract the n^{th} coefficient in the formal power series expansion of F(x).

- We use the notation $[x^n]F(x)$ to extract the n^{th} coefficient in the formal power series expansion of F(x).
- In other words, if F(x) is the OGF of the sequence $\{a_n\}_{n=0}^{\infty}$, then

$$[x^n]F(x)=a_n.$$

- We use the notation $[x^n]F(x)$ to extract the n^{th} coefficient in the formal power series expansion of F(x).
- In other words, if F(x) is the OGF of the sequence $\{a_n\}_{n=0}^{\infty}$, then

$$[x^n]F(x)=a_n.$$

■ Example: For the sequence $a_n = 1$,

(OGF)
$$[x^n]f(x) = 1$$
, (EGF) $[x^n]g(x) = \frac{1}{n!}$.

- We use the notation $[x^n]F(x)$ to extract the n^{th} coefficient in the formal power series expansion of F(x).
- In other words, if F(x) is the OGF of the sequence $\{a_n\}_{n=0}^{\infty}$, then

$$[x^n]F(x)=a_n.$$

■ Example: For the sequence $a_n = 1$,

(OGF)
$$[x^n]f(x) = 1$$
, (EGF) $[x^n]g(x) = \frac{1}{n!}$.

■ Another example: $[x^k](1+x)^n = \binom{n}{k}$ since

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$
. (by The Binomial Theorem)

Let $f(z) = \sum_{k=0}^{\infty} a_k z^k$ be a power series. If f(z) is analytic in a region Ω containing 0, then

$$[z^n]f(z) := a_n = \frac{1}{2\pi i} \int_C \frac{f(z)}{z^{n+1}} dz$$

for any simple, positively oriented loop C around θ in Ω .

Let $f(z) = \sum_{k=0}^{\infty} a_k z^k$ be a power series. If f(z) is analytic in a region Ω containing 0, then

$$[z^n]f(z) := a_n = \frac{1}{2\pi i} \int_C \frac{f(z)}{z^{n+1}} dz$$

for any simple, positively oriented loop C around 0 in Ω .

Cauchy's integral formula is a useful tool for two types of combinatorial computations:

1 asymptotic enumeration,

Let $f(z) = \sum_{k=0}^{\infty} a_k z^k$ be a power series. If f(z) is analytic in a region Ω containing 0, then

$$[z^n]f(z) := a_n = \frac{1}{2\pi i} \int_C \frac{f(z)}{z^{n+1}} dz$$

for any simple, positively oriented loop C around 0 in Ω .

Cauchy's integral formula is a useful tool for two types of combinatorial computations:

- 1 asymptotic enumeration,
- 2 Egorychev's method for evaluating combinatorial sums.

Let $f(z) = \sum_{k=0}^{\infty} a_k z^k$ be a power series. If f(z) is analytic in a region Ω containing 0, then

$$[z^n]f(z) := a_n = \frac{1}{2\pi i} \int_C \frac{f(z)}{z^{n+1}} dz$$

for any simple, positively oriented loop C around 0 in Ω .

Cauchy's integral formula is a useful tool for two types of combinatorial computations:

- 1 asymptotic enumeration,
- 2 Egorychev's method for evaluating combinatorial sums.

Egorychev's Method

G.P. Egorychev (1938-2023)

In his book Integral Representation and the Computation of Combinatorial Sums, Egorychev outlines a method for simplifying combinatorial sums.

Egorychev's Method

G.P. Egorychev (1938-2023)

- In his book Integral Representation and the Computation of Combinatorial Sums, Egorychev outlines a method for simplifying combinatorial sums.
- The idea is to identify terms that can be summed in closed form by replacing certain factors with contour integrals.

Example 1: $\sum_{k=0}^{n} {n \choose k}^2 = ?$

1) Evaluate $\sum_{k=0}^{n} {n \choose k}^2$. Provide a combinatorial interpretation.

Example 1: $\sum_{k=0}^{n} {n \choose k}^2 = ?$

1) Evaluate $\sum_{k=0}^{n} {n \choose k}^2$. Provide a combinatorial interpretation.

Answer: Since $\binom{n}{k} = [z^k](1+z)^n$,

$$\sum_{k=0}^{n} \binom{n}{k}^{2} = \sum_{k=0}^{n} \binom{n}{k} \cdot \frac{1}{2\pi i} \int_{C} \frac{(1+z)^{n}}{z^{k+1}} dz$$

$$= \frac{1}{2\pi i} \int_{C} (1+z)^{n} \left(1+\frac{1}{z}\right)^{n} \frac{1}{z} dz$$

$$= \frac{1}{2\pi i} \int_{C} \frac{(1+z)^{2n}}{z^{n+1}} dz$$

$$= [z^{n}](1+z)^{2n} = \begin{bmatrix} 2n \\ n \end{bmatrix}$$

Example 1:
$$\sum_{k=0}^{n} {n \choose k}^2 = {2n \choose n}$$

Example 1:
$$\sum_{k=0}^{n} {n \choose k}^2 = {2n \choose n}$$

 $\binom{2n}{n} = \#$ ways to pick *n* things out of 2*n* total.

Example 1:
$$\sum_{k=0}^{n} {n \choose k}^2 = {2n \choose n}$$

- $\binom{2n}{n} = \#$ ways to pick *n* things out of 2n total.
- In the integral representation

$$\frac{1}{2\pi i}\int_C (1+z)^n \left(1+\frac{1}{z}\right)^n \frac{1}{z} dz,$$

we end up multiplying two generating functions, both for picking subsets of *n* objects.

Example 1:
$$\sum_{k=0}^{n} {n \choose k}^2 = {2n \choose n}$$

- $\binom{2n}{n} = \#$ ways to pick *n* things out of 2n total.
- In the integral representation

$$\frac{1}{2\pi i}\int_C (1+z)^n \left(1+\frac{1}{z}\right)^n \frac{1}{z} dz,$$

we end up multiplying two generating functions, both for picking subsets of n objects.

■ This suggests a "double-counting" explanation.

Example 1:
$$\sum_{k=0}^{n} {n \choose k}^2 = {2n \choose n}$$

Consider a group of n kittens and n puppies. How many ways can you adopt n of them?

Example 1:
$$\sum_{k=0}^{n} {n \choose k}^2 = {2n \choose n}$$

Consider a group of n kittens and n puppies. How many ways can you adopt n of them?

We can count this in two ways.

Example 1:
$$\sum_{k=0}^{n} {n \choose k}^2 = {2n \choose n}$$

Consider a group of n kittens and n puppies. How many ways can you adopt n of them?

We can count this in two ways.

I RHS: You can adopt *n* pets out of 2n total in $\binom{2n}{n}$ ways.

Example 1:
$$\sum_{k=0}^{n} {n \choose k}^2 = {2n \choose n}$$

Consider a group of n kittens and n puppies. How many ways can you adopt n of them?

We can count this in two ways.

- **I RHS:** You can adopt *n* pets out of 2n total in $\binom{2n}{n}$ ways.
- **2 LHS:** Condition on the number of kittens you want. If you adopt k kittens with $0 \le k \le n$, then you will have n k puppies. Summing across all possible k yields

$$\sum_{k=0}^{n} \binom{n}{k} \binom{n}{n-k} = \sum_{k=0}^{n} \binom{n}{k}^{2}.$$

Process:

Apply Egorychev's method to rewrite a combinatorial expression as a contour integral.

Process:

- Apply Egorychev's method to rewrite a combinatorial expression as a contour integral.
- 2 Simplify the integral to attain the coefficient of a well-known generating function.

Process:

- Apply Egorychev's method to rewrite a combinatorial expression as a contour integral.
- 2 Simplify the integral to attain the coefficient of a well-known generating function.
- 3 Translate the symbolic algebra of generating functions back to counting methods.

Common Integral Representations

Sequences lower down this list have precedence:

• Choosing *k* objects from *n* total, without replacement:

$$\binom{n}{k} = \frac{1}{2\pi i} \int_C \frac{(1+z)^n}{z^{k+1}} dz = \frac{1}{2\pi i} \int_C \frac{1}{(1-z)^{k+1} z^{n-k+1}} dz$$

• Choosing *k* objects from *n* total, with replacement:

$$n^k = \frac{k!}{2\pi i} \int_C \frac{e^{nz}}{z^{k+1}} \, dz$$

■ Iverson bracket (indicator function for whether $k \le n$):

$$[[k \le n]] = \frac{1}{2\pi i} \int_C \frac{z^k}{z^{n+1}} \frac{1}{1-z} \, dz$$

Common Integral Representations (cont'd)

Sequences lower down this list have precedence:

Stirling numbers of the second kind (number of set partitions of $\{1, ..., n\}$ with k blocks):

$$\begin{Bmatrix} n \\ k \end{Bmatrix} = \frac{n!}{k!} \cdot \frac{1}{2\pi i} \int_C \frac{1}{z^{n+1}} (e^z - 1)^k dz$$

• Stirling numbers of the first kind (number of permutations in S_n with k cycles):

$$\begin{bmatrix} n \\ k \end{bmatrix} = \frac{n!}{k!} \cdot \frac{1}{2\pi i} \int_C \frac{1}{z^{n+1}} \left(\log \frac{1}{1-z} \right)^k dz$$

2) Evaluate $\sum_{k=0}^{n} (-1)^k \binom{n}{k} (n-k)^n$. Interpret combinatorially.

2) Evaluate $\sum_{k=0}^{n} (-1)^k \binom{n}{k} (n-k)^n$. Interpret combinatorially.

Answer: According to the rule of thumb from earlier,

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} (n-k)^n = \sum_{k=0}^{n} (-1)^k \binom{n}{k} \cdot \frac{n!}{2\pi i} \int_C \frac{e^{(n-k)z}}{z^{n+1}} dz$$
$$= \frac{n!}{2\pi i} \int_C \frac{(e^z - 1)^n}{z^{n+1}} dz$$
$$= n! [z^n] (e^z - 1)^n = \boxed{n!}$$

Example 2:
$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} (n-k)^n = n!$$

Example 2:
$$\sum_{k=0}^{n} (-1)^{k} {n \choose k} (n-k)^{n} = n!$$

How do we explain this "combinatorially?" A few observations:

• n! is the number of permutations of $[n] = \{1, \ldots, n\}$

- n! is the number of permutations of $[n] = \{1, ..., n\}$
- an alternating sum implies inclusion-exclusion

- n! is the number of permutations of $[n] = \{1, \dots, n\}$
- an alternating sum implies inclusion-exclusion
- $\binom{n}{k}$ hints towards choosing k of the n, and the $(n-k)^n$ hints towards arranging (with repetition) the *remaining* numbers

- n! is the number of permutations of $[n] = \{1, \dots, n\}$
- an alternating sum implies inclusion-exclusion
- $\binom{n}{k}$ hints towards choosing k of the n, and the $(n-k)^n$ hints towards arranging (with repetition) the *remaining* numbers
- the generating function $(e^z 1)^n$ suggests we need to take "nonempty" selections of each of the numbers in [n]

Example 2:
$$\sum_{k=0}^{n} (-1)^{k} {n \choose k} (n-k)^{n} = n!$$

We count the permutations of [n] in two different ways.

■ The RHS of *n*! is obvious.

We count the permutations of [n] in two different ways.

- The RHS of n! is obvious.
- For the LHS, take the complement of the set of functions on that are *not* surjective.

We count the permutations of [n] in two different ways.

- The RHS of *n*! is obvious.
- For the LHS, take the complement of the set of functions on that are *not* surjective.
- If $A_k = \{f : [n] \to [n] \mid \text{Im} f \text{ is missing } k \text{ numbers}\}$, then by the principle of inclusion-exclusion

$$n^{n} - \sum_{k=1}^{n} (-1)^{k-1} |A_{k}| = n^{n} - \sum_{k=1}^{n} (-1)^{k-1} \binom{n}{k} (n-k)^{n}$$
$$= \sum_{k=0}^{n} (-1)^{k} \binom{n}{k} (n-k)^{n}$$

Charles Burnette

Example 3:
$$\sum_{k=0}^{n} (-1)^{n-k} {2n \choose n+k} {n+k \choose k} = ?$$

3) Evaluate $\sum_{k=0}^{n} (-1)^{n-k} \binom{2n}{n+k} \binom{n+k}{k}$. Interpret combinatorially.

Example 3:
$$\sum_{k=0}^{n} (-1)^{n-k} \binom{2n}{n+k} \binom{n+k}{k} = ?$$

3) Evaluate $\sum_{k=0}^{n} (-1)^{n-k} \binom{2n}{n+k} \binom{n+k}{k}$. Interpret combinatorially.

Answer Sketch: Using the same rule of thumb as before,

$$\sum_{k=0}^{n} (-1)^{n-k} \binom{2n}{n+k} \binom{n+k}{k}$$

$$= \sum_{k=0}^{n} (-1)^{n-k} \binom{2n}{n+k} \frac{(n+k)!}{k!} \cdot \frac{1}{2\pi i} \int_{C} \frac{[-\log(1-z)]^{k}}{z^{n+k+1}} dz$$

$$= \frac{(2n)!}{n!} \cdot \frac{1}{2\pi i} \int_{C} \frac{(-\log(1-z)-z)^{n}}{z^{2n+1}} dz$$

$$= \frac{(2n)!}{n!} [z^{2n}] (-\log(1-z)-z)^{n} = \frac{(2n)!}{n! \cdot 2^{n}} = \boxed{(2n-1)!!}$$

Example 3:
$$\sum_{k=0}^{n} (-1)^{n-k} {2n \choose n+k} {n+k \brack k} = (2n-1)!!$$

Example 3:
$$\sum_{k=0}^{n} (-1)^{n-k} {2n \choose n+k} {n+k \brack k} = (2n-1)!!$$

• $\frac{(2n)!}{n!}[z^{2n}](-\log(1-z)-z)^n$ counts permutations of [2n] with n cycles, none of which are length one.

Example 3:
$$\sum_{k=0}^{n} (-1)^{n-k} {2n \choose n+k} {n+k \brack k} = (2n-1)!!$$

- $\frac{(2n)!}{n!}[z^{2n}](-\log(1-z)-z)^n$ counts permutations of [2n] with n cycles, none of which are length one.
- Such a permutation must be comprised entirely of cycles of length 2. There are (2n-1)!! such permutations.

Example 3:
$$\sum_{k=0}^{n} (-1)^{n-k} {2n \choose n+k} {n+k \choose k} = (2n-1)!!$$

- $\frac{(2n)!}{n!}[z^{2n}](-\log(1-z)-z)^n$ counts permutations of [2n] with n cycles, none of which are length one.
- Such a permutation must be comprised entirely of cycles of length 2. There are (2n-1)!! such permutations.
- It can be shown that the LHS is using inclusion-exclusion to count the complement: permutations of [2n] with n cycles that have fixed points.

Exercises: Evaluate and interpret combinatorially

$$1 \sum_{k=0}^{r} \binom{n}{k} \binom{m}{r-k}$$
 (easy)

$$\sum_{k=0}^{\lfloor m/2\rfloor} (-1)^k \binom{n}{k} \binom{m-2k+n-1}{n-1} \text{ where } m \le n$$
 (hard)