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Ordinary Generating Functions

“A generating function is a clothesline on which we hang up a
sequence of numbers for display.” – Herbert Wilf

Suppose a0, a1, a2, . . . is a given sequence of numbers. The
formal power series

f (z) = a0 + a1z + a2z
2 + · · ·

is called the ordinary generating function (OGF) of the
sequence {an}∞n=0.

(By formal, we mean that the sum is considered without
regard to convergence conditions.)

Example: The OGF of an = 1 is f (x) =
∞∑
n=0

xn = 1
1−x .
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Ordinary Generating Functions

OGFs aid in derivation, especially when the series has a closed
form or coincides with an elementary function.

If the coefficients of an OGF “count” the number of some
“unlabelled” discrete structure, then the algebra of formal
power series can directly be interpreted into combinatorial
statements about the structure.

“A generating function is a device somewhat similar to a bag.
Instead of carrying many little objects detachedly, which could
be embarrassing, we put them all in a bag, and then we have
only one object to carry, the bag.” – George Polya
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Example: The Catalan Numbers

The Catalan numbers (which count full binary trees, polygon
triangulations, etc.) satisfy Segner’s recurrence relation

c0 = 1 and cn+1 =
n∑

j=0

cjcn−j for n ≥ 0.

If we let C (x) denote the OGF for the Catalan numbers, the
above recurrence yields

C (x) =
∞∑
n=0

cnx
n = c0+

∞∑
n=0

cn+1x
n+1 = 1+x

∞∑
n=0

n∑
j=0

cjcn−jx
n

So C (x) = 1 + xC (x)2. Solving for C (x) and using the fact

that c0 = 1 gives us that C (x) = 1−
√
1−4x
2x .
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Exponential Generating Functions

Sometimes, it is more convenient to work with the OGF of the
sequence {an/n!}∞n=0, which is

g(z) =
∞∑
n=0

an
zn

n!
.

This is called the exponential generating function (EGF) of
the sequence {an}∞n=0.

EGFs are used to count “labelled” discrete structures.

When valuation is desired, the presence of the fast-growing
factorials in the denominator helps ensure the convergence of
the EGF.
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Examples of EGFs

The EGF of an = 1 is

g(x) =
∞∑
n=0

xn

n!
= ex .

Note: This series converges for all x , whereas the OGF
f (x) = 1

1−x has a radius of convergence of 1.

The EGF of bn = n! (a.k.a. the number of permutations of n
distinct objects) is

h(x) =
∞∑
n=0

n!
xn

n!
=

∞∑
n=0

xn =
1

1− x
.
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The Extractor

We use the notation [xn]F (x) to extract the nth coefficient in
the formal power series expansion of F (x).

In other words, if F (x) is the OGF of the sequence {an}∞n=0,
then

[xn]F (x) = an.

Example: For the sequence an = 1,

(OGF) [xn]f (x) = 1, (EGF) [xn]g(x) =
1

n!
.

Another example: [xk ](1 + x)n =
(n
k

)
since

(1 + x)n =
n∑

k=0

(
n

k

)
xk . (by The Binomial Theorem)
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Theorem (Cauchy’s Coefficient Theorem)

Let f (z) =
∑∞

k=0 akz
k be a power series. If f (z) is analytic in a

region Ω containing 0, then

[zn]f (z) := an =
1

2πi

∫
C

f (z)

zn+1
dz

for any simple, positively oriented loop C around 0 in Ω.

Cauchy’s integral formula is a useful tool for two types of
combinatorial computations:

1 asymptotic enumeration,

2 Egorychev’s method for evaluating combinatorial sums.
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Egorychev’s Method

G.P. Egorychev (1938-2023)

In his book Integral Representation and the Computation of
Combinatorial Sums, Egorychev outlines a method for
simplifying combinatorial sums.

The idea is to identify terms that can be summed in closed
form by replacing certain factors with contour integrals.
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Example 1:
∑n

k=0

(
n
k

)2
=?

1) Evaluate
∑n

k=0

(n
k

)2
. Provide a combinatorial interpretation.

Answer: Since
(n
k

)
= [zk ](1 + z)n,

n∑
k=0

(
n

k

)2

=
n∑

k=0

(
n

k

)
· 1

2πi

∫
C

(1 + z)n

zk+1
dz

=
1

2πi

∫
C
(1 + z)n

(
1 +

1

z

)n 1

z
dz

=
1

2πi

∫
C

(1 + z)2n

zn+1
dz

= [zn](1 + z)2n =

(
2n

n

)
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Example 1:
∑n

k=0

(
n
k

)2
=

(
2n
n

)
How do we explain this “combinatorially?” A couple observations:

(2n
n

)
= # ways to pick n things out of 2n total.

In the integral representation

1

2πi

∫
C
(1 + z)n

(
1 +

1

z

)n 1

z
dz ,

we end up multiplying two generating functions, both for
picking subsets of n objects.

This suggests a “double-counting” explanation.

Charles Burnette Xavier University of Louisiana

Cauchy’s Integral Formula as an Act of Combinatorics



Example 1:
∑n

k=0

(
n
k

)2
=

(
2n
n

)
How do we explain this “combinatorially?” A couple observations:(2n

n

)
= # ways to pick n things out of 2n total.

In the integral representation

1

2πi

∫
C
(1 + z)n

(
1 +

1

z

)n 1

z
dz ,

we end up multiplying two generating functions, both for
picking subsets of n objects.

This suggests a “double-counting” explanation.

Charles Burnette Xavier University of Louisiana

Cauchy’s Integral Formula as an Act of Combinatorics



Example 1:
∑n

k=0

(
n
k

)2
=

(
2n
n

)
How do we explain this “combinatorially?” A couple observations:(2n

n

)
= # ways to pick n things out of 2n total.

In the integral representation

1

2πi

∫
C
(1 + z)n

(
1 +

1

z

)n 1

z
dz ,

we end up multiplying two generating functions, both for
picking subsets of n objects.

This suggests a “double-counting” explanation.

Charles Burnette Xavier University of Louisiana

Cauchy’s Integral Formula as an Act of Combinatorics



Example 1:
∑n

k=0

(
n
k

)2
=

(
2n
n

)
How do we explain this “combinatorially?” A couple observations:(2n

n

)
= # ways to pick n things out of 2n total.

In the integral representation

1

2πi

∫
C
(1 + z)n

(
1 +

1

z

)n 1

z
dz ,

we end up multiplying two generating functions, both for
picking subsets of n objects.

This suggests a “double-counting” explanation.

Charles Burnette Xavier University of Louisiana

Cauchy’s Integral Formula as an Act of Combinatorics



Example 1:
∑n

k=0

(
n
k

)2
=

(
2n
n

)
Consider a group of n kittens and n puppies. How many ways can
you adopt n of them?

We can count this in two ways.

1 RHS: You can adopt n pets out of 2n total in
(2n
n

)
ways.

2 LHS: Condition on the number of kittens you want. If you
adopt k kittens with 0 ≤ k ≤ n, then you will have n − k
puppies. Summing across all possible k yields

n∑
k=0

(
n

k

)(
n

n − k

)
=

∑
k=0

(
n

k

)2

.
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Principle: Any combinatorial identity that can be proved using
contour integration can be proved using enumerative techniques.

Process:

1 Apply Egorychev’s method to rewrite a combinatorial
expression as a contour integral.

2 Simplify the integral to attain the coefficient of a well-known
generating function.

3 Translate the symbolic algebra of generating functions back to
counting methods.
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Common Integral Representations

Sequences lower down this list have precedence:

Choosing k objects from n total, without replacement:(
n

k

)
=

1

2πi

∫
C

(1 + z)n

zk+1
dz =

1

2πi

∫
C

1

(1− z)k+1zn−k+1
dz

Choosing k objects from n total, with replacement:

nk =
k!

2πi

∫
C

enz

zk+1
dz

Iverson bracket (indicator function for whether k ≤ n):

[[k ≤ n]] =
1

2πi

∫
C

zk

zn+1

1

1− z
dz
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Common Integral Representations (cont’d)

Sequences lower down this list have precedence:

Stirling numbers of the second kind (number of set partitions
of {1, . . . , n} with k blocks):{

n

k

}
=

n!

k!
· 1

2πi

∫
C

1

zn+1
(ez − 1)k dz

Stirling numbers of the first kind (number of permutations in
Sn with k cycles):[

n

k

]
=

n!

k!
· 1

2πi

∫
C

1

zn+1

(
log

1

1− z

)k

dz
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Example 2:
∑n

k=0(−1)k
(
n
k

)
(n − k)n =?

2) Evaluate
∑n

k=0(−1)k
(n
k

)
(n − k)n. Interpret combinatorially.

Answer: According to the rule of thumb from earlier,

n∑
k=0

(−1)k
(
n

k

)
(n − k)n =

n∑
k=0

(−1)k
(
n

k

)
· n!

2πi

∫
C

e(n−k)z

zn+1
dz

=
n!

2πi

∫
C

(ez − 1)n

zn+1
dz

= n![zn](ez − 1)n = n!
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Example 2:
∑n

k=0(−1)k
(
n
k

)
(n − k)n = n!

How do we explain this “combinatorially?” A few observations:

n! is the number of permutations of [n] = {1, . . . , n}

an alternating sum implies inclusion-exclusion(n
k

)
hints towards choosing k of the n, and the (n − k)n hints

towards arranging (with repetition) the remaining numbers

the generating function (ez − 1)n suggests we need to take
“nonempty” selections of each of the numbers in [n]
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Example 2:
∑n

k=0(−1)k
(
n
k

)
(n − k)n = n!

We count the permutations of [n] in two different ways.

The RHS of n! is obvious.

For the LHS, take the complement of the set of functions on
that are not surjective.

If Ak = {f : [n] → [n] | Imf is missing k numbers}, then by
the principle of inclusion-exclusion

nn −
n∑

k=1

(−1)k−1|Ak | = nn −
n∑

k=1

(−1)k−1

(
n

k

)
(n − k)n

=
n∑

k=0

(−1)k
(
n

k

)
(n − k)n
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Example 3:
∑n

k=0(−1)n−k
(

2n
n+k

)[
n+k
k

]
= ?

3) Evaluate
∑n

k=0(−1)n−k
( 2n
n+k

)[n+k
k

]
. Interpret combinatorially.

Answer Sketch: Using the same rule of thumb as before,

n∑
k=0

(−1)n−k

(
2n

n + k

)[
n + k

k

]

=
n∑

k=0

(−1)n−k

(
2n

n + k

)
(n + k)!

k!
· 1

2πi

∫
C

[− log(1− z)]k

zn+k+1
dz

=
(2n)!

n!
· 1

2πi

∫
C

(− log(1− z)− z)n

z2n+1
dz

=
(2n)!

n!
[z2n](− log(1− z)− z)n =

(2n)!

n! · 2n
= (2n − 1)!!
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Example 3:
∑n

k=0(−1)n−k
(

2n
n+k

)[
n+k
k

]
= (2n − 1)!!

Combinatorial Proof Sketch:

(2n)!
n! [z2n](− log(1− z)− z)n counts permutations of [2n] with

n cycles, none of which are length one.

Such a permutation must be comprised entirely of cycles of
length 2. There are (2n − 1)!! such permutations.

It can be shown that the LHS is using inclusion-exclusion to
count the complement: permutations of [2n] with n cycles
that have fixed points.
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Exercises: Evaluate and interpret combinatorially

1

r∑
k=0

(
n

k

)(
m

r − k

)
(easy)

2

n∑
k=1

(
n

k

){
n

k

}
k! (medium)

3

⌊m/2⌋∑
k=0

(−1)k
(
n

k

)(
m − 2k + n − 1

n − 1

)
where m ≤ n (hard)

4

n∑
k=0

2−k

(
n + k

k

)
[Hint: Iverson bracket] (for the brave)
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