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Local-Global Principle

“Description”: Let V be a system of Diophantine equations
with coefficients over a number field K. The system V has a
solution over K if and only if it has a solution modulo p for all
primes (finite and infinite).

Example

Question: Find the integer solutions of the equation
y2 = 3x3 + 2?

Solution: It is enough to consider the equation modulo 3.
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Local-Global Principle

Example (Legendre)

The quadratic form ax2 + by2 + cz2 = 0 has an integer solution
if and only if the system

u2 ≡ −bc (mod |a|)
v2 ≡ −ac (mod |b|)
w2 ≡ −ab (mod |c|).

Example (Selmer)

The equation
3x3 + 4y3 + 5z3 = 0

has a solution over R and modulo p for all primes but it does
not have an integer solution.
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Elliptic Curves

Let K be a field. Then an elliptic curve E/K is a non-singular
curve of the form

E : y2 = x3 +Ax+B, A,B ∈ K.

We can give a group structure on E.
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Elliptic Curves Isogeny

Let E, E′ two elliptic curves over K. A homomorphisms
ϕ : E → E′ with ker(ϕ) < ∞ is called an isogeny.

Definition

We say that E admits a K-rational ℓ-isogeny if there exists
ϕ as above such that #ker(ϕ) = ℓ and ker(ϕ) is stable under
the action of GK .

Suppose K is a number field and E/K. It is easy to show that
when E admits a K-rational ℓ-isogeny then Ẽ/Fp also admits
an Fp-rational ℓ-isogeny for almost all primes p in K, where
Ẽ/Fp is the reduction curve of E at p.
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Local-Global Isogeny Property

Question

When Ẽ/Fp admits an Fp-rational ℓ-isogeny for almost all
primes p in K, does E admit a K-rational ℓ-isogeny?
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Local-Global Isogeny Property

In 2012, Sutherland shows that the answer is usually “yes”, but
there are pairs (E/K, ℓ) for which that answer is “no”. In
particular, the answer depends only on the j-invariant of E and
the prime ℓ.

Definition

A pair (j0, ℓ) with j0 ∈ K is called exceptional for K is there
exists E/K with j(E) = j0 and the answer to the above
question is “no”. Such a prime ℓ is called an exceptional prime
for K.
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Elliptic Curves

Let ℓ an integer prime with (ℓ, char(K)) = 1. We denote by E[ℓ]
the points of E with order ℓ. We can show that

E[ℓ] ≃ (Z/ℓZ)2 .

For σ ∈ GK , the absolute Galois group of K, and P ∈ E[ℓ] it
holds that P σ ∈ E[ℓ]. Therefore, we get a representation

ρ̄E,ℓ : GK → GL2(Fℓ),

which is the action of GK on E[ℓ].
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Conditions on Exceptional Primes

We can give necessary conditions on exceptional primes. Let
ℓ∗ =

(−1
ℓ

)
ℓ. Let GE,ℓ = ρ̄E,ℓ(GK) and HE,ℓ = P(GE,ℓ).

Theorem (Sutherland, 2012)

Let K with
√
ℓ∗ ̸∈ K. If (j0, ℓ) is exceptional pair for K, then

for the elliptic curve E/K with j(E) = j0 holds:

1 Then HE,ℓ ≃ D2n, where n > 1 is an odd divisor of
(ℓ− 1)/2,

2 ℓ ≡ 3 (mod 4),

3 The group GE,ℓ is contained in the normaliser of a split
Cartan subgroup of GL2(Fℓ),

4 E obtains a rational ℓ-isogeny over K(
√
ℓ∗).
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Conditions on Exceptional Primes

Theorem (Banwait-Cremona, 2014)

Let K with
√
ℓ∗ ∈ K. If (j0, ℓ) is exceptional pair for K, then

for the elliptic curve E/K with j(E) = j0 holds:

1 HE,ℓ ≃ A4 and ℓ ≡ 1 (mod 12),

2 HE,ℓ ≃ S4 and ℓ ≡ 1 (mod 24),

3 HE,ℓ ≃ A5 and ℓ ≡ 1 (mod 60),

4 HE,ℓ ≃ D2n and ℓ ≡ 1 (mod 4), where n > 1 is a divisor of
(ℓ− 1)/2, and GE,ℓ lies in a normaliser of a split Cartan
subgroup of GL2(Fℓ).
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Exceptional Primes over Q

Using the above theorem Sutherland proves that the only
exceptional pair when K = Q is (2268945128 , 7). In particular, the
elliptic curve

y2 = x3 − 138915x− 18932130,

admits a 7-isogeny at every prime p of good reduction (and over
R) but it does not admit a 7-isogeny over Q.
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Exceptional Primes over Number Fields

We can search for exceptional primes in the following directions:

1 Either we fix K and try to find all exceptional primes ℓ for
K, or

2 we fix ℓ and search if ℓ is exceptional in a “suitable”
(infinite) family of number fields K.
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Exceptional Primes over Number Fields

Theorem (Anni, 2014)

Let K a number field of degree d and discriminant ∆. Let
ℓK := max{|∆|, 6d+ 1}. Then, if (j0, ℓ) is an exceptional pair
for K then it holds

1 ℓ ≤ ℓK ,

2 There are finitely many exceptional pairs (j0, ℓ) with
7 < ℓ ≤ ℓK .

Conjecture (Banwait-Cremona, 2014)

11 is not an exceptional prime for any quadratic field.

Answer: It is enough to determine the quadratic points of the
modular curves XD10 .

13 / 32



Exceptional Primes over Number Fields

Theorem (Anni, 2014)

Let K a number field of degree d and discriminant ∆. Let
ℓK := max{|∆|, 6d+ 1}. Then, if (j0, ℓ) is an exceptional pair
for K then it holds

1 ℓ ≤ ℓK ,

2 There are finitely many exceptional pairs (j0, ℓ) with
7 < ℓ ≤ ℓK .

Conjecture (Banwait-Cremona, 2014)

11 is not an exceptional prime for any quadratic field.

Answer: It is enough to determine the quadratic points of the
modular curves XD10 .

13 / 32



Modular Curves

Let G ⊂ GL2(Fℓ) with det(G) = F∗
ℓ and

π : SL2(Z) → SL2(Fℓ), (1)

the natural projection. We denote by Γ := π−1(G ∩ SL2(Fℓ)).
We define the compact Riemann surface

XG := (H ∪ {i∞} ∪Q)/Γ,

where H is the Poincare upper half plane where the action of Γ
is given by Möbius transformations. Then, XG is a curve
defined over Q.

14 / 32



Moduli Interpretation

Becaus Γ ⊂ SL2(Z) the natural map j : XG → X(1) ≃ P1 is
called the j-map. The curve XG has the following moduli
interpretation.

Moduli Interpretation

Every point P ∈ XG(K) corresponds to an elliptic curve
E/K such that j(P ) = j(E) and GE,ℓ ⊂ G and vice versa.
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Why Quadratic Points on XD10
?

Let ℓ = 11 and K a quadratic field. By Sutherland’s theorem
we know that the exceptional pairs (j0, 11) correspond to curves
E/K such that HE,11 ≃ D10 ⊂ PGL2(F11). Let G be the
pullback of D10 in GL2(F11) and XD10 := XG.

Hence it is enough to compute the quadratic points of XD10 .

Question

How do we compute the quadratic points on XD10?

Answer: With the (symmetric) Chabauty method!
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p-adic Numbers

Let p a prime. Then any x ∈ Q is written in the form x = pn a
b

with (ab, p) = 1 and n ∈ Z. We define the p-adic metric

|x| = p−n.

The completion of Q with respect to the p-adic metric is called
the field of p-adic numbers Qp. An element x ∈ Qp is of the form

x =

∞∑
i=−n0

aip
i, ai ∈ {0, · · · , p− 1}, n0 ∈ Z.

We can do p-adic analysis in Qp.
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p-adic Integration

Suppose X a smooth curve over Q of genus g and J its
Jacobian. Let p be a prime of good reduction for X and X̃ the
reduction of X modulo p. We also assume there exists
P0 ∈ X(Q).

If ΩJQp
is the Qp-space of global 1-forms of J which has

dimension g. Then due to Coleman there exists a pairing

ΩJQp
× J(Qp) → Qp, (ω,D) 7→

∫ D

0
ω,

which is bilinear and nondegenarate.
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Residue Class

Let P ∈ X(Qp) and P̃ ∈ X̃(Fp) the reduction of P . The residue
class of P is

Bp(P ) := {Q ∈ X(Qp) : Q̃ = P̃}.

Let tP is a rational function on X that reduces to a uniformizer
on X̃ at P̃ . It holds
• tP is a uniformizer at P and t̃P̃ is a uniformizer at P̃ .
• tP defines a bijection Bp(P ) → pZp and Q 7→ tP (Q).

Moreover, tP (Q) = 0 if and only if P = Q.

X(Qp)

tP
P

Bp(P )
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Integration on a Residue Class

Proposition

Let X, p, P , tP as above and ω ∈ ΩJQp
. There exists a power

series
ϕ(x) = a1x+ a2x

2 + a3x
3 + · · · ∈ Qp[[x]],

such that ∫ [Q−P ]

0
ω = ϕ(z),

for all Q ∈ Bp(P ) and z = tP (Q).
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Chabauty’s Idea

Let rank(J(Q)) = r with r < g (Chabauty condition). Suppose
S ⊂ X(Q) a set of known points.

Goal

Prove that S = X(Q).

Let P ∈ S and Q ∈ X(Q) ∩Bp(P ). Because r < g there exists
non-zero ω ∈ ΩJQp

such that annihilates J(Q). In other words,
there exists ω such that

ϕ(z) =

∫ [Q−P ]

0
ω = 0.

Hence, the only we have to do is to determine the zeros of ϕ(z).
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Chabauty’s Idea in Practice

In practice we prove that X(Q) ∩Bp(P ) = {P} for every P ∈ S
and every p ∈ T where T is a suitable finite set of primes.

Therefore it is enough to show that X(Q) ∩Bp(P ) = ∅ for all
P ∈ X(Qp) \ S and p ∈ T .

But how?
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Mordell-Weil Sieve

We can do it using the Mordell-Weil Sieve. The idea of the
sieve is based on the following commutative diagram.

X(Q) J(Q)

X̃(Fp) J̃(Fp)

π

red red

π

We get π(X(Q)) ⊂ Wp + Lp where Wp is a set of coset
representatives of red−1(π(X̃(Fp))) and

Lp := ker
(
J(Q) → J̃(Fp)

)
.
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Mordell-Weil Sieve

Let
WT + LT =

⋂
p∈T

(Wp + Lp),

where LT =
⋂

p∈T Lp and WT a finite subset of J(Q). Obviously,
π(X(Q)) ∈ WT + LT . If T is chosen carefully such that

π(S) + LT = WT + LT ⊃ π(X(Q)),

LT ⊂ ker

J(Q) →
∏
p∈T

J̃(Fp)

 ,

then we get S = X(Q).
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Symmetric Chabauty

Let P ∈ X(K) where K is a quadratic field and P̄ = P σ where
σ is a generator of Gal(K/Q).

Let X(2) the 2-nd symmetric power of X. The elements of
X(2)(Q) corresponds to effective Q-rational divisors on X of
degree 2. In particular, {P, P̄} corresponds to an element of
X(2)(Q) and vice versa.

Using the map X(2) → J , {P, P̄} 7→ [P + P̄ − 2P0] we can apply
the Chabauty method at X(2) under the assumption that
r < g − 2 due to the work of Siksek.
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The Modular Curve XD10

The modular curve XD10 has genus 6. By the work of
Galbraith, Box and Assaf we can compute a non-singular model
which is given by

uw − 2vw + 2ux − 6vx + 2uy + 2vy + uz = 0,

uw + vw + 2ux − 2vx + 2uy − 10vy − 5uz + 11vz = 0,

− 6u
2
+ 6uv − 3v

2
+ 11w

2 − 66wx + 11x
2
+ 88wy − 110xy + 99y

2
+ 44wz − 110xz = 0,

6u
2
+ 12uv + 12v

2
+ 187wx + 22x

2
+ 55wy − 44xy − 154y

2
+ 66wz + 77xz + 121yz = 0,

− 9v
2
+ 88w

2 − 11wx − 99x
2 − 77wy + 110xy − 11y

2
+ 77wz − 297xz + 121yz = 0,

− 6u
2 − 12uv − 12v

2
+ 33w

2 − 77wx + 66x
2 − 121wy − 132xy − 110y

2

− 44wz − 187xz + 121yz + 121z
2

= 0

It holds that rank(JXD10
(Q)) = 1.
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The Modular Curve XD10

The curve XD10 is a degree 2 cover of the curve

C : y2 + (x3 + x2 + x+ 1)y = −2x5 + 2x4 − 3x3 + 2x2 − 2x,

under a map ϕXD10
: XD10 → C that we can explicitly compute.

Note: It also holds rank(JC(Q)) = 1. Moreover, C ≃ X+
0 (121).

Proposition

We can prove that C(Q) = {(1,−3), (1,−1), (0,−1), (0, 0),±∞}.
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Quadratic Points on XD10

In particular, the set

S ={(−3/4, 1/4, 0,±
√
77

2
, 0, 1), (3/4,−5/4, 0,±

√
77

2
, 0, 1)

(1, 1, 1,±
√
−11,±

√
−11, 1), (−2/5, 2/5, 1/5,±

√
209

5
,∓

√
209

5
, 1),

(−1, 7, 5,±
√
473,∓

√
473, 1), (−1/3, 0,−1/3,±

√
22

3
,±

√
22

3
, 1)},

are quadratic points on XD10 , all are pullbacks of C(Q) under
ϕXD10

.
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Chabauty Method on X
(2)
D10

We apply symmetric Chabauty for p = 5, 7, 13, 17 and we prove
that the elements in S are the only elements in there residue

classes modulo p of X
(2)
D10

(Qp).

With the Mordell-Weil sieve we prove that S corresponds to the

complete set of points on X
(2)
D10

(Q).

The image of the points in S under the j-map is

J = [∞,−3375, 8000,−884736, 16581375,−884736000].

The above values do not correspond to exceptional pairs over
any quadratic field K/Q.
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Main Theorem

From the above we have given a positive answer in the
conjecture of Banwait-Cremona.

Theorem (Gajović-Hanselman-K.)

11 is not an exceptional prime for any quadratic field.
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Future Work

• Prove that 11 is not an exceptional prime for all cubic and
quintic number fields.

• Consider exceptional pairs over cubic fields. The only
possible primes primes are ℓ = 11 and 19. We have to
determine the cubic points on XD10 and X+

0 (192). It holds
that g(X+

0 (192)) = 9 and the rank of the Jacobian is 8
(big!).

• Compute quadratic and cubic points on the modular curves
in the LMFDB database.
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Thank you for your attention!!!
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