Local-Global Principle of Elliptic Curves

Angelos Koutsianas

Department of Mathematics Aristotle University of Thessaloniki

Department of Mathematics Xavier University of Louisiana 29 October, 2024

joint with Stevan Gajović and Jeroen Hanselman

SQC

"Description": Let V be a system of Diophantine equations with coefficients over a number field K. The system V has a solution over K if and only if it has a solution modulo \mathfrak{p} for all primes (finite and infinite).

Example

Question: Find the integer solutions of the equation $y^2 = 3x^3 + 2$?

"Description": Let V be a system of Diophantine equations with coefficients over a number field K. The system V has a solution over K if and only if it has a solution modulo \mathfrak{p} for all primes (finite and infinite).

Example

Question: Find the integer solutions of the equation $y^2 = 3x^3 + 2$?

Solution: It is enough to consider the equation modulo 3.

Local-Global Principle

Example (Legendre)

The quadratic form $ax^2+by^2+cz^2=0$ has an integer solution if and only if the system

$u^2 \equiv -bc$	$\pmod{ a }$
$v^2 \equiv -ac$	$\pmod{ b }$
$w^2 \equiv -ab$	$(\mod c).$

Local-Global Principle

Example (Legendre)

The quadratic form $ax^2 + by^2 + cz^2 = 0$ has an integer solution if and only if the system

$$u^{2} \equiv -bc \pmod{|a|}$$
$$v^{2} \equiv -ac \pmod{|b|}$$
$$w^{2} \equiv -ab \pmod{|c|}.$$

Example (Selmer)

The equation

$$3x^3 + 4y^3 + 5z^3 = 0$$

has a solution over \mathbb{R} and modulo p for all primes but it does **not** have an integer solution.

Elliptic Curves

Let K be a field. Then an elliptic curve E/K is a non-singular curve of the form

$$E: y^2 = x^3 + Ax + B, \quad A, B \in K.$$

We can give a group structure on E.

Let E, E' two elliptic curves over K. A homomorphisms $\phi: E \to E'$ with ker $(\phi) < \infty$ is called an **isogeny**.

Definition

We say that E admits a K-rational ℓ -isogeny if there exists ϕ as above such that $\# \ker(\phi) = \ell$ and $\ker(\phi)$ is stable under the action of G_K .

Suppose K is a number field and E/K. It is easy to show that when E admits a K-rational ℓ -isogeny then \tilde{E}/\mathbb{F}_p also admits an \mathbb{F}_p -rational ℓ -isogeny for almost all primes \mathfrak{p} in K, where \tilde{E}/\mathbb{F}_p is the reduction curve of E at \mathfrak{p} .

Question

When $\tilde{E}/\mathbb{F}_{\mathfrak{p}}$ admits an $\mathbb{F}_{\mathfrak{p}}$ -rational ℓ -isogeny for almost all primes \mathfrak{p} in K, does E admit a K-rational ℓ -isogeny?

In 2012, Sutherland shows that the answer is usually "yes", but there are pairs $(E/K, \ell)$ for which that answer is "no". In particular, the answer depends only on the *j*-invariant of *E* and the prime ℓ .

Definition

A pair (j_0, ℓ) with $j_0 \in K$ is called *exceptional for* K is there exists E/K with $j(E) = j_0$ and the answer to the above question is "no". Such a prime ℓ is called an *exceptional prime for* K.

Let ℓ an integer prime with $(\ell, \operatorname{char}(K)) = 1$. We denote by $E[\ell]$ the points of E with order ℓ . We can show that

 $E[\ell] \simeq (\mathbb{Z}/\ell\mathbb{Z})^2.$

For $\sigma \in G_K$, the absolute Galois group of K, and $P \in E[\ell]$ it holds that $P^{\sigma} \in E[\ell]$. Therefore, we get a representation

$$\bar{\rho}_{E,\ell}: G_K \to \mathrm{GL}_2(\mathbb{F}_\ell),$$

イロト (四) (王) (王) (王) (つ)

8/32

which is the action of G_K on $E[\ell]$.

We can give necessary conditions on exceptional primes. Let $\ell^* = \left(\frac{-1}{\ell}\right) \ell$. Let $G_{E,\ell} = \bar{\rho}_{E,\ell}(G_K)$ and $H_{E,\ell} = \mathbb{P}(G_{E,\ell})$.

Theorem (Sutherland, 2012)

Let K with $\sqrt{\ell^*} \notin K$. If (j_0, ℓ) is exceptional pair for K, then for the elliptic curve E/K with $j(E) = j_0$ holds:

- Then $H_{E,\ell} \simeq D_{2n}$, where n > 1 is an odd divisor of $(\ell 1)/2$,
- $2 \ell \equiv 3 \pmod{4},$
- 3 The group G_{E,ℓ} is contained in the normaliser of a split Cartan subgroup of GL₂(𝔽_ℓ),
- **4** E obtains a rational ℓ -isogeny over $K(\sqrt{\ell^*})$.

Theorem (Banwait-Cremona, 2014)

Let K with $\sqrt{\ell^*} \in K$. If (j_0, ℓ) is exceptional pair for K, then for the elliptic curve E/K with $j(E) = j_0$ holds:

$$H_{E,\ell} \simeq A_4 \ and \ \ell \equiv 1 \pmod{12},$$

2
$$H_{E,\ell} \simeq S_4$$
 and $\ell \equiv 1 \pmod{24}$,

3
$$H_{E,\ell} \simeq A_5$$
 and $\ell \equiv 1 \pmod{60}$,

④ $H_{E,\ell} \simeq D_{2n}$ and $\ell \equiv 1 \pmod{4}$, where n > 1 is a divisor of $(\ell - 1)/2$, and $G_{E,\ell}$ lies in a normaliser of a split Cartan subgroup of $\operatorname{GL}_2(\mathbb{F}_\ell)$.

Using the above theorem Sutherland proves that the only exceptional pair when $K = \mathbb{Q}$ is $(\frac{2268945}{128}, 7)$. In particular, the elliptic curve

$$y^2 = x^3 - 138915x - 18932130,$$

admits a 7-isogeny at every prime p of good reduction (and over \mathbb{R}) but it does not admit a 7-isogeny over \mathbb{Q} .

We can search for exceptional primes in the following directions:

- $\textbf{0} Either we fix K and try to find all exceptional primes <math>\ell$ for K, or
- 2 we fix ℓ and search if ℓ is exceptional in a "suitable" (infinite) family of number fields K.

Theorem (Anni, 2014)

Let K a number field of degree d and discriminant Δ . Let $\ell_K := \max\{|\Delta|, 6d+1\}$. Then, if (j_0, ℓ) is an exceptional pair for K then it holds

 $1 \ \ell \leq \ell_K,$

2 There are finitely many exceptional pairs (j_0, ℓ) with $7 < \ell \leq \ell_K$.

Conjecture (Banwait-Cremona, 2014)

11 is not an exceptional prime for any quadratic field.

Theorem (Anni, 2014)

Let K a number field of degree d and discriminant Δ . Let $\ell_K := \max\{|\Delta|, 6d+1\}$. Then, if (j_0, ℓ) is an exceptional pair for K then it holds

 $1 \ell \leq \ell_K,$

2 There are finitely many exceptional pairs (j_0, ℓ) with $7 < \ell \leq \ell_K$.

Conjecture (Banwait-Cremona, 2014)

11 is not an exceptional prime for any quadratic field.

Answer: It is enough to determine the quadratic points of the modular curves $X_{D_{10}}$.

Let $G \subset \operatorname{GL}_2(\mathbb{F}_\ell)$ with $\det(G) = \mathbb{F}_\ell^*$ and

$$\pi: \mathrm{SL}_2(\mathbb{Z}) \to \mathrm{SL}_2(\mathbb{F}_\ell),\tag{1}$$

the natural projection. We denote by $\Gamma := \pi^{-1}(G \cap \operatorname{SL}_2(\mathbb{F}_{\ell}))$. We define the compact Riemann surface

$$X_G := (\mathbb{H} \cup \{i\infty\} \cup \mathbb{Q})/\Gamma,$$

where \mathbb{H} is the Poincare upper half plane where the action of Γ is given by Möbius transformations. Then, X_G is a curve defined over \mathbb{Q} .

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへの

Becaus $\Gamma \subset \mathrm{SL}_2(\mathbb{Z})$ the natural map $j: X_G \to X(1) \simeq \mathbb{P}^1$ is called the *j*-map. The curve X_G has the following moduli interpretation.

Moduli Interpretation

Every point $P \in X_G(K)$ corresponds to an elliptic curve E/K such that j(P) = j(E) and $G_{E,\ell} \subset G$ and vice versa.

Let $\ell = 11$ and K a quadratic field. By Sutherland's theorem we know that the exceptional pairs $(j_0, 11)$ correspond to curves E/K such that $H_{E,11} \simeq D_{10} \subset \operatorname{PGL}_2(\mathbb{F}_{11})$. Let G be the pullback of D_{10} in $\operatorname{GL}_2(\mathbb{F}_{11})$ and $X_{D_{10}} := X_G$.

Hence it is enough to compute the quadratic points of $X_{D_{10}}$.

Question

How do we compute the quadratic points on $X_{D_{10}}$?

Let $\ell = 11$ and K a quadratic field. By Sutherland's theorem we know that the exceptional pairs $(j_0, 11)$ correspond to curves E/K such that $H_{E,11} \simeq D_{10} \subset \operatorname{PGL}_2(\mathbb{F}_{11})$. Let G be the pullback of D_{10} in $\operatorname{GL}_2(\mathbb{F}_{11})$ and $X_{D_{10}} := X_G$.

Hence it is enough to compute the quadratic points of $X_{D_{10}}$.

Question

How do we compute the quadratic points on $X_{D_{10}}$?

Answer: With the (symmetric) Chabauty method!

Let p a prime. Then any $x \in \mathbb{Q}$ is written in the form $x = p^n \frac{a}{b}$ with (ab, p) = 1 and $n \in \mathbb{Z}$. We define the p-adic metric

$$|x| = p^{-n}.$$

The completion of \mathbb{Q} with respect to the *p*-adic metric is called the field of *p*-adic numbers \mathbb{Q}_p . An element $x \in \mathbb{Q}_p$ is of the form

$$x = \sum_{i=-n_0}^{\infty} a_i p^i, \quad a_i \in \{0, \cdots, p-1\}, \ n_0 \in \mathbb{Z}.$$

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへの

17/32

We can do *p*-adic analysis in \mathbb{Q}_p .

Suppose X a smooth curve over \mathbb{Q} of genus g and J its Jacobian. Let p be a prime of good reduction for X and \tilde{X} the reduction of X modulo p. We also assume there exists $P_0 \in X(\mathbb{Q})$.

If $\Omega_{J_{\mathbb{Q}_p}}$ is the \mathbb{Q}_p -space of global 1-forms of J which has dimension g. Then due to Coleman there exists a pairing

$$\Omega_{J_{\mathbb{Q}_p}} \times J(\mathbb{Q}_p) \to \mathbb{Q}_p, \quad (\omega, D) \mapsto \int_0^D \omega,$$

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへの

18/32

which is bilinear and nondegenarate.

Residue Class

Let $P \in X(\mathbb{Q}_p)$ and $\tilde{P} \in \tilde{X}(\mathbb{F}_p)$ the reduction of P. The residue class of P is

$$B_p(P) := \{ Q \in X(\mathbb{Q}_p) : \tilde{Q} = \tilde{P} \}.$$

Let t_P is a rational function on X that reduces to a uniformizer on \tilde{X} at \tilde{P} . It holds

- t_P is a uniformizer at P and $\tilde{t}_{\tilde{P}}$ is a uniformizer at \tilde{P} .
- t_P defines a bijection $B_p(P) \to p\mathbb{Z}_p$ and $Q \mapsto t_P(Q)$. Moreover, $t_P(Q) = 0$ if and only if P = Q.

Proposition

Let X, p, P, t_P as above and $\omega \in \Omega_{J_{\mathbb{Q}_p}}$. There exists a power series

$$\phi(x) = a_1 x + a_2 x^2 + a_3 x^3 + \dots \in \mathbb{Q}_p[[x]],$$

such that

$$\int_0^{[Q-P]} \omega = \phi(z),$$

for all $Q \in B_p(P)$ and $z = t_P(Q)$.

Chabauty's Idea

Let rank $(J(\mathbb{Q})) = r$ with r < g (*Chabauty condition*). Suppose $S \subset X(\mathbb{Q})$ a set of known points.

GoalProve that $S = X(\mathbb{Q}).$

Chabauty's Idea

Let rank $(J(\mathbb{Q})) = r$ with r < g (*Chabauty condition*). Suppose $S \subset X(\mathbb{Q})$ a set of known points.

Goal Prove that $S = X(\mathbb{Q})$.

Let $P \in S$ and $Q \in X(\mathbb{Q}) \cap B_p(P)$. Because r < g there exists non-zero $\omega \in \Omega_{J_{\mathbb{Q}_p}}$ such that annihilates $J(\mathbb{Q})$. In other words, there exists ω such that

$$\phi(z) = \int_0^{[Q-P]} \omega = 0.$$

Hence, the only we have to do is to determine the zeros of $\phi(z)$.

In practice we prove that $X(\mathbb{Q}) \cap B_p(P) = \{P\}$ for every $P \in S$ and every $p \in T$ where T is a suitable finite set of primes.

Therefore it is enough to show that $X(\mathbb{Q}) \cap B_p(P) = \emptyset$ for all $P \in X(\mathbb{Q}_p) \setminus S$ and $p \in T$.

In practice we prove that $X(\mathbb{Q}) \cap B_p(P) = \{P\}$ for every $P \in S$ and every $p \in T$ where T is a suitable finite set of primes.

Therefore it is enough to show that $X(\mathbb{Q}) \cap B_p(P) = \emptyset$ for all $P \in X(\mathbb{Q}_p) \setminus S$ and $p \in T$.

But how?

We can do it using the *Mordell-Weil Sieve*. The idea of the sieve is based on the following commutative diagram.

$$\begin{array}{ccc} X(\mathbb{Q}) & \stackrel{\pi}{\longrightarrow} & J(\mathbb{Q}) \\ & & & \downarrow red \\ \tilde{X}(\mathbb{F}_p) & \stackrel{\pi}{\longrightarrow} & \tilde{J}(\mathbb{F}_p) \end{array}$$

We get $\pi(X(\mathbb{Q})) \subset W_p + L_p$ where W_p is a set of coset representatives of red⁻¹ $(\pi(\tilde{X}(\mathbb{F}_p)))$ and $L_p := \ker \left(J(\mathbb{Q}) \to \tilde{J}(\mathbb{F}_p) \right).$

23 / 32

Let

$$W_T + L_T = \bigcap_{p \in T} (W_p + L_p),$$

where $L_T = \bigcap_{p \in T} L_p$ and W_T a finite subset of $J(\mathbb{Q})$. Obviously, $\pi(X(\mathbb{Q})) \in W_T + L_T$. If T is chosen carefully such that

$$\pi(S) + L_T = W_T + L_T \supset \pi(X(\mathbb{Q})),$$
$$L_T \subset \ker\left(J(\mathbb{Q}) \to \prod_{p \in T} \tilde{J}(\mathbb{F}_p)\right),$$

then we get $S = X(\mathbb{Q})$.

Let $P \in X(K)$ where K is a quadratic field and $\overline{P} = P^{\sigma}$ where σ is a generator of $\operatorname{Gal}(K/\mathbb{Q})$.

Let $X^{(2)}$ the 2-nd symmetric power of X. The elements of $X^{(2)}(\mathbb{Q})$ corresponds to effective \mathbb{Q} -rational divisors on X of degree 2. In particular, $\{P, \overline{P}\}$ corresponds to an element of $X^{(2)}(\mathbb{Q})$ and vice versa.

Using the map $X^{(2)} \to J$, $\{P, \overline{P}\} \mapsto [P + \overline{P} - 2P_0]$ we can apply the Chabauty method at $X^{(2)}$ under the assumption that r < g - 2 due to the work of Siksek. The modular curve $X_{D_{10}}$ has genus 6. By the work of Galbraith, Box and Assaf we can compute a non-singular model which is given by

$$\begin{split} uw &- 2vw + 2ux - 6vx + 2uy + 2vy + uz = 0, \\ uw + vw + 2ux - 2vx + 2uy - 10vy - 5uz + 11vz = 0, \\ &- 6u^2 + 6uv - 3v^2 + 11w^2 - 66wx + 11x^2 + 88wy - 110xy + 99y^2 + 44wz - 110xz = 0, \\ &6u^2 + 12uv + 12v^2 + 187wx + 22x^2 + 55wy - 44xy - 154y^2 + 66wz + 77xz + 121yz = 0, \\ &- 9v^2 + 88w^2 - 11wx - 99x^2 - 77wy + 110xy - 11y^2 + 77wz - 297xz + 121yz = 0, \\ &- 6u^2 - 12uv - 12v^2 + 33w^2 - 77wx + 66x^2 - 121wy - 132xy - 110y^2 \\ &- 44wz - 187xz + 121yz + 121z^2 = 0 \end{split}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

26/32

It holds that $\operatorname{rank}(J_{X_{D_{10}}}(\mathbb{Q})) = 1.$

The curve $X_{D_{10}}$ is a degree 2 cover of the curve

$$C: y^{2} + (x^{3} + x^{2} + x + 1)y = -2x^{5} + 2x^{4} - 3x^{3} + 2x^{2} - 2x,$$

under a map $\phi_{X_{D_{10}}}: X_{D_{10}} \to C$ that we can explicitly compute.

Note: It also holds rank $(J_C(\mathbb{Q})) = 1$. Moreover, $C \simeq X_0^+(121)$.

Proposition

We can prove that $C(\mathbb{Q}) = \{(1, -3), (1, -1), (0, -1), (0, 0), \pm \infty\}.$

In particular, the set

$$\begin{split} S = &\{(-3/4, 1/4, 0, \pm \frac{\sqrt{77}}{2}, 0, 1), \ (3/4, -5/4, 0, \pm \frac{\sqrt{77}}{2}, 0, 1) \\ &(1, 1, \pm \sqrt{-11}, \pm \sqrt{-11}, 1), \ (-2/5, 2/5, 1/5, \pm \frac{\sqrt{209}}{5}, \mp \frac{\sqrt{209}}{5}, 1), \\ &(-1, 7, 5, \pm \sqrt{473}, \mp \sqrt{473}, 1), (-1/3, 0, -1/3, \pm \frac{\sqrt{22}}{3}, \pm \frac{\sqrt{22}}{3}, 1)\}, \end{split}$$

are quadratic points on $X_{D_{10}}$, all are pullbacks of $C(\mathbb{Q})$ under $\phi_{X_{D_{10}}}$.

We apply symmetric Chabauty for p = 5, 7, 13, 17 and we prove that the elements in S are the only elements in there residue classes modulo p of $X_{D_{10}}^{(2)}(\mathbb{Q}_p)$.

With the Mordell-Weil sieve we prove that S corresponds to the complete set of points on $X_{D_{10}}^{(2)}(\mathbb{Q})$.

The image of the points in S under the j-map is

 $J = [\infty, -3375, 8000, -884736, 16581375, -884736000].$

The above values do not correspond to exceptional pairs over any quadratic field K/\mathbb{Q} .

From the above we have given a positive answer in the conjecture of Banwait-Cremona.

Theorem (Gajović-Hanselman-K.)

11 is not an exceptional prime for any quadratic field.

- Prove that 11 is not an exceptional prime for all cubic and quintic number fields.
- Consider exceptional pairs over cubic fields. The only possible primes primes are $\ell = 11$ and 19. We have to determine the cubic points on $X_{D_{10}}$ and $X_0^+(19^2)$. It holds that $g(X_0^+(19^2)) = 9$ and the rank of the Jacobian is 8 (big!).
- Compute quadratic and cubic points on the modular curves in the LMFDB database.

Thank you for your attention!!!