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Local-Global Principle

“Description”: Let V be a system of Diophantine equations
with coefficients over a number field K. The system V has a
solution over K if and only if it has a solution modulo p for all
primes (finite and infinite).

Example
Question: Find the integer solutions of the equation
y? = 3x3 4+ 27
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Local-Global Principle

“Description”: Let V be a system of Diophantine equations
with coefficients over a number field K. The system V has a
solution over K if and only if it has a solution modulo p for all
primes (finite and infinite).

Example

Question: Find the integer solutions of the equation
y? = 3x3 4+ 27

Solution: It is enough to consider the equation modulo 3.
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Local-Global Principle

Example (Legendre)

The quadratic form az? + by? + cz? = 0 has an integer solution
if and only if the system

u? = —be  (mod |al)
v? = —ac (mod |b])
w? = —ab  (mod |c|).
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Local-Global Principle

Example (Legendre)

The quadratic form axz? + by? + cz? = 0 has an integer solution
if and only if the system

u? = —be  (mod |al)
v? = —ac (mod |b])
w? = —ab  (mod |c|).

Example (Selmer)

The equation
323 + 43 + 523 =0

has a solution over R and modulo p for all primes but it does
not have an integer solution.
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Elliptic Curves

Let K be a field. Then an elliptic curve F/K is a non-singular

curve of the form

E:y?=24+Az+B, ABecK.

We can give a group structure on F.

f

X

s

R=P+Q
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Elliptic Curves Isogeny

Let E, E’ two elliptic curves over K. A homomorphisms
¢: E — FE’ with ker(¢) < oo is called an isogeny.

Definition

We say that F admits a K-rational /-isogeny if there exists
¢ as above such that # ker(¢) = ¢ and ker(¢) is stable under
the action of Gk .

Suppose K is a number field and E/K. It is easy to show that
when E admits a K-rational (-isogeny then E /Fy also admits
an [Fp-rational /-isogeny for almost all primes p in K, where
E/F, is the reduction curve of E at p.
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Local-Global Isogeny Property

When E /Fy admits an Fy-rational £-isogeny for almost all
primes p in K, does E admit a K-rational £-isogeny?
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Local-Global Isogeny Property

In 2012, Sutherland shows that the answer is usually “yes”, but
there are pairs (E/K,¢) for which that answer is “no”. In
particular, the answer depends only on the j-invariant of E and
the prime /.

Definition

A pair (jo, ) with jo € K is called ezceptional for K is there
exists E/K with j(F) = jo and the answer to the above

question is “no”. Such a prime /£ is called an ezceptional prime
for K.
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Elliptic Curves

Let ¢ an integer prime with (¢, char(K)) = 1. We denote by E[/]
the points of F with order £. We can show that

E[l] ~ (ZJI7)* .

For 0 € G, the absolute Galois group of K, and P € E[(] it
holds that P? € E[f]. Therefore, we get a representation

ﬁE,Z : GK — GLQ(]F[),

which is the action of Gx on E[/].
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Conditions on Exceptional Primes

We can give necessary conditions on exceptional primes. Let
0= (F) ¢ Let Gpy = pp(Gx) and Hgp = P(Gpy).

Theorem (Sutherland, 2012)

Let K with V0* ¢ K. If (Jo,?) is exceptional pair for K, then
for the elliptic curve E/K with j(E) = jo holds:
©® Then Hpy ~ Day,, where n > 1 is an odd divisor of
(£-1)/2,
® (=3 (mod 4),

® The group Gy is contained in the normaliser of a split
Cartan subgroup of GLo(Fy),

© E obtains a rational (-isogeny over K (v/*).
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Conditions on Exceptional Primes

Theorem (Banwait-Cremona, 2014)
Let K with 0* € K. If (Jo,?) is exceptional pair for K, then
for the elliptic curve E/K with j(E) = jo holds:

® Hpo~ Ay and =1 (mod 12),

® Hpy~ Sy and ¢ =1 (mod 24),

® Hpy~ As and { =1 (mod 60),

® Hpy~ Dy, and { =1 (mod 4), where n > 1 is a divisor of
(¢ —1)/2, and Ggy lies in a normaliser of a split Cartan
subgroup of GLa(FFy).
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Exceptional Primes over Q

Using the above theorem Sutherland proves that the only

exceptional pair when K = Q is (%, 7). In particular, the

elliptic curve
y? = 2° — 1389152 — 18932130,

admits a 7-isogeny at every prime p of good reduction (and over
R) but it does not admit a 7-isogeny over Q.
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Exceptional Primes over Number Fields

We can search for exceptional primes in the following directions:

@ Either we fix K and try to find all exceptional primes ¢ for
K, or

® we fix £ and search if £ is exceptional in a “suitable”
(infinite) family of number fields K.
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Exceptional Primes over Number Fields

Theorem (Anni, 2014)
Let K a number field of degree d and discriminant A. Let
lk :=max{|A|,6d + 1}. Then, if (jo,¥) is an exceptional pair
for K then it holds
0 /! < /g,
® There are finitely many exceptional pairs (jo, ) with
T<tl<[/lg.

Conjecture (Banwait-Cremona, 2014)

11 is mot an exceptional prime for any quadratic field.
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Exceptional Primes over Number Fields

Theorem (Anni, 2014)
Let K a number field of degree d and discriminant A. Let
lk :=max{|A|,6d + 1}. Then, if (jo,¥) is an exceptional pair
for K then it holds
0 /! < /g,
® There are finitely many exceptional pairs (jo, ) with

Conjecture (Banwait-Cremona, 2014)

11 is mot an exceptional prime for any quadratic field.

Answer: It is enough to determine the quadratic points of the
modular curves Xp,,.
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Modular Curves

Let G C GLy(F,) with det(G) = F; and
T SLQ(Z) — SLQ(F[), (1)

the natural projection. We denote by I' := 7~ 1(G N SLa(Fy)).
We define the compact Riemann surface

X¢ = (HU {ico} UQ)/T,

where H is the Poincare upper half plane where the action of T’
is given by Mobius transformations. Then, X¢ is a curve
defined over Q.
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Moduli Interpretation

Becaus I' C SLy(Z) the natural map j : Xg — X (1) ~ P! is
called the j-map. The curve X has the following moduli
interpretation.

Moduli Interpretation

Every point P € X (K) corresponds to an elliptic curve
E/K such that j(P) = j(F) and Gg ¢ C G and vice versa.




Why Quadratic Points on Xp, 7

Let £ =11 and K a quadratic field. By Sutherland’s theorem
we know that the exceptional pairs (jp, 11) correspond to curves
E/K such that HE711 ~ Dy C PGLQ(]Fll). Let G be the
pullback of Dyg in GLa(F11) and Xp,, := Xa.

Hence it is enough to compute the quadratic points of Xp,,.

Question

How do we compute the quadratic points on Xp,,?

u]
8
I
i
it
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Why Quadratic Points on Xp, 7

Let £ =11 and K a quadratic field. By Sutherland’s theorem
we know that the exceptional pairs (jp, 11) correspond to curves
E/K such that HE711 ~ Dy C PGLQ(]Fll). Let G be the
pullback of Dyg in GLa(F11) and Xp,, := Xa.

Hence it is enough to compute the quadratic points of Xp,,.

Question

How do we compute the quadratic points on Xp,,?

Answer: With the (symmetric) Chabauty method!
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p-adic Numbers

Let p a prime. Then any x € Q is written in the form x = p"§
with (ab,p) = 1 and n € Z. We define the p-adic metric

—-n

lz| = p

The completion of QQ with respect to the p-adic metric is called
the field of p-adic numbers Qp. An element x € Q) is of the form

o)
T = Zaipi7 aiE{O,“',p_l}, nOGZ'

1=—ng

We can do p-adic analysis in Q.
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p-adic Integration

Suppose X a smooth curve over Q of genus g and J its
Jacobian. Let p be a prime of good reduction for X and X the
reduction of X modulo p. We also assume there exists

PheX (Q)

If Q Ja, is the Q,-space of global 1-forms of J which has
dimension g. Then due to Coleman there exists a pairing

D
Qig, x J(Qp) = Qp, (w, D) r—)/o w,

which is bilinear and nondegenarate.
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Residue Class

Let P € X(Q,) and P € X(F,) the reduction of P. The residue
class of P is

By(P) :={Q € X(Qp) : Q= P}.
Let tp is a rational function on X that reduces to a uniformizer
on X at P. It holds
® {p is a uniformizer at P and ¢ plsa uniformizer at P.
® tp defines a bijection B,(P) — pZ, and Q — tp(Q).
Moreover, tp(Q) = 0 if and only if P = Q.
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Integration on a Residue Class

Proposition
Let X, p, P, tp as above and w € QJQP. There exists a power
series

o(z) = a1z + asx® +agzd +--- € Qpll]],

such that
[Q—P]
[ w=ew,
0

for all Q € B,(P) and z = tp(Q).
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Chabauty’s Idea

Let rank(J(Q)) = r with r < g (Chabauty condition). Suppose
S C X(Q) a set of known points.

Prove that S = X (Q).




Chabauty’s Idea

Let rank(J(Q)) = r with r < g (Chabauty condition). Suppose
S C X(Q) a set of known points.

Prove that S = X (Q).

Let P € S and Q € X(Q) N By(P). Because r < g there exists
non-zero w € €1y, such that annihilates J(Q). In other words,
there exists w such that

[@—P]
o(z) = /0 w=0.

Hence, the only we have to do is to determine the zeros of ¢(z).

DA
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Chabauty’s Idea in Practice

In practice we prove that X (Q) N B,(P) = {P} for every P € S
and every p € T where T is a suitable finite set of primes.

Therefore it is enough to show that X (Q) N B,(P) = 0 for all
PeX(Qy)\SandpeT.
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Chabauty’s Idea in Practice

In practice we prove that X (Q) N B,(P) = {P} for every P € S
and every p € T where T is a suitable finite set of primes.

Therefore it is enough to show that X (Q) N B,(P) = 0 for all
PeX(Qy)\SandpeT.

But how?
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Mordell-Weil Sieve

We can do it using the Mordell-Weil Sieve. The idea of the
sieve is based on the following commutative diagram.

X@Q —— J(@Q

lred

X(Fp) —"— J(Fy)

We get 7(X(Q)) C W, —|— L, where W), is a set of coset
representatives of red ™! (7 (X (Fp))) and

Ly i=Tker (J(@) = J(F)).
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Mordell-Weil Sieve

Let
Wr+ Ly = ﬂ(Wp+Lp)a
peT

where Ly = [,y Ly and Wr a finite subset of J(Q). Obviously,
m(X(Q)) € Wr + Lp. If T is chosen carefully such that

7(S) + Ly = Wr + Lt D 7(X(Q)),

Ly C ker (J(Q) - 1] j(Fp)) ,

peT

then we get S = X(Q).
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Symmetric Chabauty

Let P € X(K) where K is a quadratic field and P = P° where
o is a generator of Gal(K/Q).

Let X the 2-nd symmetric power of X. The elements of
X®@)(Q) corresponds to effective Q-rational divisors on X of
degree 2. In particular, {P, P} corresponds to an element of
X®@)(Q) and vice versa.

Using the map X — J, {P, P} — [P 4+ P — 2P,] we can apply
the Chabauty method at X under the assumption that
r < g — 2 due to the work of Siksek.
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The Modular Curve Xp,,

The modular curve Xp,, has genus 6. By the work of
Galbraith, Box and Assaf we can compute a non-singular model
which is given by

ww — 2vw + 2ux — 6vx + 2uy + 2vy + uz = 0,

ww + vw + 2ux — 2ve + 2uy — 10vy — Suz + 1lvz = 0,

— 6u? + 6uv — 302 + 11w? — 66w + 1122 + 88wy — 110zy + 99y> + 44wz — 110xz = 0,
6u? + 12uv + 1202 + 187wz + 2222 + 55wy — 4dzy — 154y> + 66wz + 7Txz + 121yz = 0,
— 9v? + 88w? — 11wz — 9922 — TTwy + 110zy — 11y% + T7Twz — 297zz + 121yz = 0,

— 6u? — 12uv — 1202 4 33w? — TTwz + 6622 — 121wy — 1322y — 110y>

— 44wz — 187zz + 121yz + 12122 = 0

It holds that rank(Jx, (Q))=1.
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The Modular Curve Xp,,

The curve Xp,, is a degree 2 cover of the curve
C: P+ @+ 224z +1)y=—22° + 22" — 32° + 2% — 2z,
under a map ¢x,, : Xp,, = C that we can explicitly compute.

Note: It also holds rank(Jo(Q)) = 1. Moreover, C' ~ X (121).

Proposition

We can prove that C(Q) = {(1,-3),(1,-1),(0,—1),(0,0), £oo}.
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Quadratic Points on Xp,,

In particular, the set

ﬁ ﬁ

S ={(=3/4,1/4,0,£-,0.1), (3/4,-5/4,0,£-,0,1)
(1,1,1,£v/—11,£v/—11,1), (—2/5,2/5,1/5, i\/? @,1),

(=1,7,5,£V473, FV/473,1), (—1/3,0,—1/3, + \g j:£ 1)1,

are quadratic points on Xp,,, all are pullbacks of C'(Q) under
¢)(D10'

28 /32



Chabauty Method on Xgl)o

We apply symmetric Chabauty for p = 5,7,13,17 and we prove
that the elements in S are the only elements in there residue
classes modulo p of X(D21)o (Qp).

With the Mordell-Weil sieve we prove that S corresponds to the
complete set of points on X1(321)o (Q).

The image of the points in .S under the j-map is
J = o0, —3375,8000, —884736, 16581375, —884736000].

The above values do not correspond to exceptional pairs over
any quadratic field K/Q.
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Main Theorem

From the above we have given a positive answer in the
conjecture of Banwait-Cremona.

Theorem (Gajovié-Hanselman-K.)

11 is not an exceptional prime for any quadratic field.
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® Prove that 11 is not an exceptional prime for all cubic and
quintic number fields.

® (Consider exceptional pairs over cubic fields. The only
possible primes primes are £ = 11 and 19. We have to
determine the cubic points on Xp,, and X (192). It holds
that g(Xg (19%)) = 9 and the rank of the Jacobian is 8
(big!).

e Compute quadratic and cubic points on the modular curves
in the LMFDB database.
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Thank you for your attention!!!
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