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Do all waves "break"?

Figure: Left: Mark Mathews winning the Australian Big Wave award. Botany Bay, Sydney,
Australia. Right: Oregon coast.
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Solitons and their history
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What is a soliton?

Solitons are special solitary waves which interact elastically, meaning that after the
interaction between two or more solitons the individual waves recover their original shape,
amplitude, and velocity, and the only effect of the interaction is a position shift.

agkogkou@tulane.edu M@X – Math at Xavier March 25, 2025 4 / 54



The first soliton

Solitary waves were first observed by the Scottish engineer John Scott Russell
(1808-1882) in 1834, while riding on horseback beside the narrow Union Canal near
Edinburgh, Scotland.

While conducting experiments to determine the most efficient design for canal boats,
John Scott Russell made a remarkable discovery. It is described in his Report on waves
(1844).

Figure: John Scott Russell
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Report on waves (1844)

I was observing the motion of a boat drawn along a narrow channel by a pair of horses,
when the boat suddenly stopped - not so the mass of water in the channel. It rolled
forward with great velocity, assuming the form of a large solitary elevation, a rounded,
smooth and well-defined heap of water, which continued its course along the channel
apparently without change of form or diminution of speed. I followed it on horseback,
and overtook it still rolling on at a rate of some eight or nine miles an hour, preserving its
original figure some thirty feet long and a foot to a foot and a half in height. Its height
gradually diminished, and after a chase of one or two miles I lost it in the windings of the
channel. Such, in the month of August 1834, was my first chance interview with that
singular and beautiful phenomenon...

Request to mathematicians

"...it was not to be supposed that after its existence had been discovered and phenomena
determined, endeavors would not be made to reconcile it with existing theory, or to show
how it ought to have been predicted from the known equations of fluid motion. In other
words, it now remained for the mathematicians to predict the discovery after it had
happened..."
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Russell’s experiments

After his observation, Russell built wave tanks at his home and carried out experiments
to study this phenomenon more carefully.

Figure: Russell’s experiments
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Russell’s observations

We include some of his results:

1. He observed stable shallow-water waves that can travel long distances, and thus he
deduced that solitary waves exist.

2. Their speed of propagation depends on the size of the wave, i.e., taller waves travel
faster, and their width depends on the depth of the water.

3. Unlike regular waves they will never merge. A small solitary wave is overtaken by a
large one, after their interaction they split and they recover their original shape,
amplitude and velocity. The only effect of the interaction is a position shift. We call
this interaction trivial or elastic.
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Russell’s experiments: recreation in Edinburgh

Figure: Recreation of a solitary wave on the Union Canal.
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Some historical remarks

1. Airy (1845) and Stokes (1847) did not believe Russell’s observation. They believed
that all waves can be explained by the linear water wave theory.

2. In 1895, two Dutch mathematicians, Korteweg and de Vries published a milestone
work in the history of the development of soliton theory. They derived a model for
the evolution of long unidirectional waves in shallow water, a nonlinear PDE that
approximately described the wave elevation η(x , t) above mean height (h).
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The first soliton equation!

KdV equation and its solitary wave solution

ut + 6sign(γ)uux + uxxx = 0, γ = 1 − 3T
gh2 (1)

where g is the gravity, T is the surface tension, and h is the mean height. The KdV
soliton is given by

us(x , t) = sign(γ)2k2sech2k
(
x − x0 − 4k2t

)
(2)

with

|umax| = 2k2, speed = 2|umax|. (3)
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1. In 1965, Zabusky and Kruskal discovered that solitary wave solutions of KdV
interact elastically.

2. Due to this behavior, Zabusky and Kruskal termed these solutions solitons.

3. Speed and amplitude are preserved upon interaction. The only effect is a position
shift.

Figure: Soliton interactions
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Integrability and IST

Wikipedia: In mathematics, the IST is a method for solving some nonlinear PDEs. It is one of

the most important developments in mathematical physics in the past 40 years.
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An introduction to integrable systems

There exists a subclass of nonlinear PDEs that possess deep mathematical structure and
require a separate investigation. They are now known as integrable systems, and they
admit some common properties:

They admit traveling wave solutions, often in the form of solitons.

They can be linearized using the inverse scattering transform (IST).

They possess an infinite number of conserved quantities.
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The classical IST: NLS equation

The nonlinear Schrödinger (NLS) equation

iqt + qxx − 2ν |q|2q = 0, (x , t) ∈ R (4)

[ν = −1 and ν = 1 ⇔ “focusing” and “defocusing” NLS]
has many applications in deep water waves, Bose-Einstein condensates, propagation
of light in nonlinear optical fibers, etc.

The NLS equation is an integrable system, which means that there exists an
operator pair X,T, the so-called Lax pair such that X,T satisfy:

Φx(x , t, k) = X(x , t, k)Φ(x , t, k), Φt(x , t, k) = T(x , t, k)Φ(x , t, k) (5)

if and only if the compatibility condition Φxt = Φtx is identically satisfied provided q
solves (4).

For the focusing NLS equation:

X(x , t, k) =
(
−ik q
−q∗ ik

)
, T(x , t, k) =

(
−2ik2 + i |q|2 2kq + iqx
−2kq∗ + iq∗

x 2ik2 − i |q|2
)

where k ∈ C is the scattering parameter (similar to the Fourier spectral parameter).
Φ are called the scattering eigenfunctions, and are functions of x , t, k.
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IST: analog of a nonlinear Fourier transform

The existence of a Lax pair implies that we can solve the initial value problem of the NLS
equation via the inverse scattering transform (IST), which consists of the following three
steps:

direct scattering problem [analog of direct Fourier transform]: the initial data
q(x , 0) is transformed into the scattering data, denoted by S(k, 0): a reflection
coefficient ρ(k, 0) [analog of the Fourier transform of the initial condition], discrete
eigenvalues kj ’s, which are the values of k where the problem admits bounded
eigenfunctions [each kj associated to one soliton], and norming constants, often
denoted by Cj ’s, which specify the normalization of the eigenfunctions.

time dependence problem [analog of time evolution in Fourier space]: time
evolution of the transformed data, i.e., determine S(k, t) from S(k, 0) via simple,
explicitly solvable ODEs.

inverse scattering problem [analog of inverse Fourier transform]: recovery of the
evolved solution q(x , t) from the evolved solution S(k, t).
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Figure: IST schematically

Gardner, Greene, Kruskal & Miura in 1967 solved the initial value problem for the KdV
equation using ideas of direct/inverse scattering.

The technique was then generalized by Zakharov & Shabat in 1972 and used to integrate
the NLS equation.

Ablowitz, Kaup, Newell & Segur in 1974 showed that the technique applies to a wide class
of nonlinear PDEs.
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Some physically relevant integrable systems

Integrable systems in 1 + 1 dimensions
Korteweg-de Vries equation (KdV)
Nonlinear Schrödinger equation (NLS)
Modified KdV equation
Sine-Gordon equation
Derivative NLS equation
Benjamin-Ono equation
Boussinesq equation
Camassa-Holm equation
Classical Heisenberg ferromagnet model
Degasperis-Procesi equation

Harry-Dym equation
Kaup-Kupershmidt equation
Krichever-Novikov equation
Landau-Lifshitz equation
Nonlinear sigma models
Thirring model
Three-wave interaction equation
Maxwell-Bloch systems
Short-pulse equations
...

Integrable PDEs in 2 + 1 dimensions
Kadomtsev-Petviashvili equation
Davey-Stewartson equation
Ishimori equation

Novikov-Veselov equation
...

Integrable lattice models
Ablowitz-Ladik lattice
Toda lattice Volterra lattice

...
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Riemann-Hilbert Analysis

agkogkou@tulane.edu M@X – Math at Xavier March 25, 2025 19 / 54



Reconstruction of the solution

There is a direct mapping between the initial data of the potential, q(x , 0), and the
scattering data, S(k, t), as established in the direct problem of the IST. Consequently, a
one-to-one correspondence exists between the solution q(x , t) of the NLS equation and a
matrix-valued function M(x , t; k) which satisfies a matrix Riemann Hilbert problem
(RHP). In particular, q(x , t) is obtained from M(x , t; k) via the relation:

q(x , t) = −2i lim
k→∞

[k M12(x , t; k)] . (6)
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RHP for M

Find 2 × 2 matrix-valued function M(x , t; k) such that:
1 M(x , t; k) is sectionally analytic in C \ R
2 M(x , t; k) has well-defined boundary values M±(x , t; k) on R that satisfy:

M+(x , t; k) = M−(x , t; k)

(
1 + |ρ(k)|2 ρ∗(k) e2i Ω(x,t;k)

ρ(k) e−2i Ω(x,t;k) 1

)
, k ∈ R (7)

Ω(x , t; k) = kx − 2k2t

3 M(x , t; k) has simple poles at
{
kj , k

∗
j

}N
j=1, with residues:

Resk=kjM(x , t; k) = lim
k→kj

[
M(x , t; k)

(
0 0

Cje
2i Ω(x,t;kj ) 0

)]
(8)

Resk=k∗j
M(x , t; k) = lim

k→k∗j

[
M(x , t; k)

(
0 −C∗

j e
−2i Ω(x,t;k∗j )

−0 0

)]
(9)

4 M(x , t; k) = I2 + O(k−1), k → ∞.
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Solitonic solutions

To study pure solitonic solutions (no reflection) we set ρ(k) = 0 for all k ∈ R. In this
case, the previous RHP reduces to finding a meromorphic function M(x , t; k) with:

1 poles at
{
kj , k

∗
j

}N
j=1 with the given residue conditions (N is the # of solitons)

2 no jump across R
3 M(x , t; k) = I2 + O(k−1), k → ∞.

We can express:

M(x , t; k) = I2 +
N∑
j=1

1
k − kj

(
αj

1 0
αj

2 0

)
+

N∑
j=1

1
k − k∗

j

(
0 βj

1
0 βj

2

)
(10)

where αj
ℓ and βj

ℓ are constants independent of k, for ℓ = 1, 2. Imposing the known
residue conditions, we write a system for αj

ℓ and βj
ℓ which we can solve and compute

M(x , t; k) explicitly.

Remark

When ρ(k) is present, then we cannot solve for M(x , t; k) in a closed form but we can still
express it in terms of algebraic-integral equations.
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Beyond the classical IST: non-zero boundary conditions (NZBCs)

Consider the defocusing NLS equation

iqt + qxx − 2|q|2q = 0 (11)

with NZBCs
q(x , t) → q±(t), x → ±∞

then the system admits dark solitons (localized intensity dips over the nonzero
background).
The IST for NLS systems with NZBCs is much more challenging!

Figure: Dark soliton solutions.
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Recent developments: a numerical IST
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Problem setup

Consider the modified defocusing NLS equation

iqt + qxx + 2(q2
o − |q|2)q = 0 (12)

with constant NZBCs at infinity

q± = lim
x→±∞

q(x , t) = qoe
iθ± , (13)

and piecewise constant initial condition (IC) of box-type

q(x , 0) =


q− = q0e

−iθ− , x < −L

qc = he iα, −L < x < L

q+ = q0e
iθ+ , x > L

(14)

where h, q0 and L are arbitrary non-negative parameters, θ±, α are arbitrary phases (the
term q2

o in the PDE makes the boundary conditions independent of time).
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Our aim

Our goal is to solve numerically equation (12) equipped with conditions (13) and
(14), for the values

L = 1, qo = 1, θ = 0, α = 0, h > qo

and study the time evolution of the box-type IC.

Analytic solution is not possible (ρ is present). Numerics is needed.

However, traditional direct numerical methods are difficult to handle discontinuous
ICs ⇒ Gibbs phenomena.

We use a combination of analysis and numerics.
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Reflection coefficient
For this piece-wise IC, we can derive the explicit expression of the reflection coefficient ρ(z):

ρ(z) = e−2iλ(z)

(
ik(z)(h − 1)

k2(z)− h + iλ(z)µ(z) cot(2µ(z))

)
. (15)

Here, z is the so-called uniformization variable [Faddeev & Takthajan, Springer 1984] defined as:

z = k + λ ⇔ k =
1
2

(
z + 1/z

)
, λ =

1
2

(
z − 1/z

)
(16)

and the function µ(z) is defined as: µ(z) =
√

k2(z)− h2.

Advantages of choosing this discontinuous IC
Explicit expression of the scattering data.
The specific choice of IC yields analyticity of ρ(z) in the entire z-plane.

For this specific choice of IC, the problem admits no discrete eigenvalues⇒ no poles for ρ

and M.
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RHP for M

Find a 2 × 2 matrix-valued function M(z) := M(x , t; z) such that:
1 M(z) is sectionally analytic in C \ R
2 M(z) has well-defined boundary values M±(z) on R \ {0} that satisfy:

M+(z) = M−(z)GM(x , t; z), GM(x , t; z) =

(
1 − |ρ(z)|2 −ρ∗(z)e2iΩ(x,t;z)

ρ(z)e−2iΩ(x,t;z) 1

)
Ω(x , t; z) = −λ(z)x − 2k(z)λ(z)t

3 M(z) admits the asymptotic behavior:

M(z) = I2 +O(1/z), z → ∞ (18a)

M(z) =
σ2

z
+O(z), z → 0 (18b)

where σ2 =

(
0 −i
i 0

)
.
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Our aim

Our goal is to find a 2 × 2 matrix-valued function M which satisfies conditions 1.-3. In
other words, we want to solve numerically the RHP for M and obtain the solution to the
defocusing NLS equation via the aforementioned relation

q(x , t) = lim
z→∞
z∈C+

[iz M1,2(x , t; z)] . (19)

Numerical solution of RHPs connected to integrables PDEs over the years

2012: Trogdon, Olver & Deconinck - KdV and mKdV equations (ZBCs)

2013: Trogdon & Olver - focusing and defocusing NLS equation (ZBCs)

2017: Bilman & Trogdon - Toda lattice (ZBCs)

2020: Bilman & Trogdon - KdV equation (NZBCs)

2024: Gkogkou, Prinari & Trogdon - defocusing NLS equation (NZBCs)
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Analysis: main ingredients

Removing the singularity at z = 0 by introducing a new function that satisfies the
same RHP as M and is well-defined at z = 0.

Eliminate the rapidly oscillatory exponents appearing on the jump matrix

Gm(ξ; z) =

(
1 − |ρ(z)|2 −ρ∗(z)e−2t iθ(ξ;z)

ρ(z)e2t iθ(ξ;z) 1

)
θ(ξ; z) = 2

(
λ(z)ξ + k(z)λ(z)

)
, ξ = x/2t

and turn them into exponential decay, by performing contour deformations away
from the real axis [opening lenses], following the principles of nonlinear steepest
descent [analog to the method of steepest descent for approximating integrals](Deift
& Zhou, 1993; Deift, Venakides & Zhou, 1997).
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Removing the singularity at z = 0

Consider the function M̃ which satisfies the following RHP.

RHP for M̃

Find a 2 × 2 matrix-valued function M̃(z) such that:
1 M̃(z) is sectionally analytic in C \ R
2 M̃(z) satisfies the same jump relation across R as M

3 M̃(z) = I2 +O(1/z), z → ∞
4 M̃(z) has well-defined boundary values as z → 0 from C± which are equal

M̃(0) := lim
z→0
z∈C±

M̃±(z).

Recovery of M

We solve numerically the RHP for M̃, and we recover M via the relation

M(z) =

(
I2 +

σ2qoe
−iθσ3

z
M̃−1(0)

)
M̃(z), σ3 =

(
1 0
0 −1

)
. (20)

One can show that det M̃(x , t, z) = 1, for all z ∈ C.
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Numerical solution of the RHP for m2,d(z)

There exists a sequence of transformations that deforms the contour away from R,
converting the rapidly oscillatory exponents into exponential decay.
The final transformation in this sequence is denoted as m2,d which satisfies the jump
relation:

m2,d+(z) = m2,d−(z)Gm2,d (ξ; z), z ∈ Σ′ =
4⋃

j=1

Σj . (21)

This RHP is solved numerically using the method of Olver, 2012; Trogdon & Olver, 2015,
where Σ′ is a union of line segments and Gm2,d satisfies some regularity conditions [by
converting the RHP into a system of linear equations].

Reconstructing q(x , t)

We reconstruct the potential q(x, t) in terms of m2,d via the relation

q(x, t) = i

((
m

(1)
2,d (x, t)

)
12

+
(
σ2∆

−1(0)m−1
2,d (x, t, 0)

)
12

)
(22)

through unraveling the transformations

q(x, t) = lim
z→∞
z∈C+

(
iz m1,2(x, t, z)

)
, M(z) → M̃(z) → m1,d (z) → m2,d (z). (23)

Here, m(1)
2,d (x, t) is the O(1/z)-order asymptotics of m2,d as z → ∞.
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Time evolution of the IC

Figure: Plot of |q(x , t)|2 for fixed values of t as a function of x (small spatial domain) for the
chosen IC: qo = 1, L = 1, θ± = 0, α = 0 and h = 1.5.
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Time evolution of the IC

Figure: Plot of |q(x , t)|2 for t = 2.5 as a function of x (larger spatial domain) for the values
qo = 1, L = 1, θ = 0, α = 0, h = 1.5 (top) and qo = 1, L = 1, θ = 0, α = 0, h = 3 (bottom).
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Recent developments: soliton gas
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Soliton gas

Figure: An original prop used in the production of the long-running BBC television series Doctor
Who.
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Soliton gas

The concept of soliton gas was introduced in 1971 by Zakharov as an infinite collection of
weakly interacting (KdV) solitons. In a diluted soliton gas, solitons with random parameters
are almost non-overlapping.

Central object: describe the distribution of solitons for spectral parameters and soliton
centers that obey a suitable kinetic equation.

This concept was recently extended to dense gases, solitons strongly and continuously
interact.

The notion of soliton gas is inherently associated with integrable PDEs.

We are interested in the asymptotic behavior of the N-soliton solution of an integrable
system when N → ∞.

Key tools: IST, Riemann-Hilbert Analysis, small-norm theory, thermodynamic limit of
finite-gap potentials, generalized Gibbs ensembles.
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Problem setup

Consider the focusing NLS equation
iqt + qxx + 2|q|2q = 0. (24)

Set ρ(k) = 0, for all k ∈ R (no jump across R).
Choose N eigenvalues kj accumulating on a horizontal line η1 ∈ C+ (and k∗

j are accumulated in
η2 ∈ C−) and distributed via some density function.

Figure: Poles kj and their complex conjugates

qN (x, t) is the corresponding N-soliton solution to the focusing NLS equation given by:
qN (x, t) = lim

k→∞
z∈C+

[iz M1,2(x, t; k)] (25)

where

M(x, t; k) = I2 +
N∑

j=1

1
k − kj

(
αj

1 0
αj

2 0

)
+

N∑
j=1

1
k − k∗

j

(
0 βj

1
0 βj

2

)
(26)

Our aim

Let N → ∞ and study the asymptotic behavior of qN(x , t) when N → ∞. In this case,
qN(x , t) is approximated by the soliton gas condensate solution qSG (x , t,N), which is the
corresponding solution to the NLS equation.
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Statement of the results

Theorem (G., Mazzuca, McLaughlin)

For all (x, t) in a compact set K , there is N0 so that for all N > N0, |qSG (x, t,N)|2 satisfies

|qSG (x, t,N)|2 = c2
(
Θ′ ( τ+1

2 ; τ
))2

Θ(τ ; τ)Θ(0; τ)

Θ
(
− ζ(x,N)

2π + 1−τ
2 ; τ

)
Θ
(
− ζ(x,N)

2π + τ−1
2 ; τ

)
Θ2
(
− ζ(x,N)

2π ; τ
) + O

(
1

logN

)
,

where the error term O
(

1
log N

)
is uniform for all (x, t) in K . Here Θ(z; τ) is the Jacobi Theta-3 function,

and τ, c, ζ(x,N),∆(x) are given by:

c =
1
2

(∫ −A∗

A

1
R+(s)

ds

)−1

, τ = 2c
∫ −A

−A∗

1
R(s)

ds

ζ(x,N) = −
τ∆(x) − 2 ln(N)

2cπ

(∫ −A

−A∗

s2

R(s)
ds − τ

∫ −A∗

A

s2

R+(s)
ds

)

∆(x) =

(∫ −A∗

−A

1
R(s)

ds

)−1(
−
∫ −A∗

A

log (2πh(s)ρ(s)) + 2isx
R+(s)

ds +

∫ A∗

−A

log (2πh(s)ρ(s)) − 2isx
R+(s)

ds

)

where R(z) = (z − A)
1
2 (z + A)

1
2 (z − A∗)

1
2 (z + A∗)

1
2 with standard branch-cuts, and A is the right

endpoint of η1.
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Some plots

Figure: Solution to the focusing NLS equation. Here, A = 1 + i , N = 2000 on the left and
N = 1000 on the right plot.

Remark

The leading order asymptotic behavior of |qSG (x , t,N)|2 is independent of time. This is
because zj accumulate on symmetric contours. qSG (x , t,N) can be interpreted as an
elliptic wave with zero velocity [soliton gas condensate is in a sort of equilibrium state].
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Thanks to my collaborators on the work I presented:

Gkogkou A., Prinari B. & Trogdon T. Numerical inverse scattering transform for the
defocusing NLS with box-type initial conditions with nonzero background
(arXiv:2412.19703).

Gkogkou A., Mazzuca G. & McLaughlin K. The formation of a soliton gas
condensate for the focusing Nonlinear Schrödinger equation (arXiv:2502.14749).
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Figure: Don’t get eaten by a shark!

Thank you for your attention!

Any questions?
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The classical IST: analysis
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The classical IST: focusing NLS

Recall that the focusing NLS equation:

iqt + qxx + 2|q|2q = 0, (x , t) ∈ R (27)

admits the following Lax pair:

Φx =

(
−ik q
−q∗ ik

)
Φ, Φt =

(
−2ik2 + i |q|2 2kq + iqx
−2kq∗ + iq∗x 2ik2 − i |q|2

)
Φ. (28)

Jost eigenfunctions

If q → 0 (sufficiently rapidly) as |x | → ∞, then the Lax pair asymptotically reduces to

Φx ∼ −ikσ3Φ, Φt ∼ −2ik2σ3Φ, x → ±∞ (29)

and one can define simultaneous solutions of the two equations of the Lax pair that satisfy:

Φ±(x , t; k) = (Φ±,1(x , t; k) ,Φ±,2(x , t; k)) ∼ I2e
−iΩ(x,t;k)σ3 , x → ±∞ ,

where Ω(x , t; k) = kx − 2k2t and σ3 is the third Pauli matrix.

If q(., t) ∈ L1(R) for all t ≥ 0, Φ±(x , t; k) are continuous for all k ∈ R, and Φ−,1(x , t; k),
Φ+,2(x , t; k) are analytic for k ∈ C+, and Φ−,2(x , t; k), Φ+,1(x , t; k) are analytic for k ∈ C−.
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Scattering coefficients

Φ± are two fundamental matrix solutions of the Lax pair, therefore:

Φ−(x , t; k) = Φ+(x , t; k)S(k) , S(k) =

(
s11(k) s12(k)
s21(k) s22(k)

)
, k ∈ R

where

s11(k) ≡ Wr(Φ−,1 ,Φ+,2) analytic for k ∈ C+

s22(k) ≡ Wr(Φ+,1 ,Φ−,2) analytic for k ∈ C−

and reflection coefficient [analog of the Fourier transform of the initial condition]:

ρ(k) =
s21(k)

s11(k)
, k ∈ R .

The reflection coefficient plays a crucial role at the inverse problem of the IST.
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Discrete eigenvalues

Discrete eigenvalues are zeros of s11(k) for k ∈ C+ (resp., of s22(k) for k ∈ C−).

By symmetry, discrete eigenvalues in the NLS equation appear in pairs: {kn , k∗
n }

N
n=1, where

N is the # of solitons.
At each discrete eigenvalue, one has:

Resk=kn [Φ−,1(x , t; k)/s11(k)] = Cn e
2iΩ(x,t,k) Φ+,2(x , t; kn) ,

Cn is the norming constant associated to the eigenvalue kn ∈ C+, similarly for k∗
n ∈ C−.

Time evolution

Because Φ±(x , t; k) are defined as simultaneous solutions of the Lax pair, the
evolution of the scattering data is trivial, namely, the scattering matrix S(k) is
independent of t. Consequently, the reflection coefficient, discrete eigenvalues, and
normalization constants are all time-independent!

One can work the two equations of the Lax pair separately. Then, the time evolution
of the scattering data is given through simple differential equations.
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Defocusing NLS: Lax pair and uniformization variable

The defocusing NLS equation

iqt + qxx − 2|q|2q = 0 (30)

is an integrable system with Lax pair given by:

X(x , t; k) = −ikσ3 + Q, T(x , t; k) = −2ik2σ3 + iσ3(Qx − Q2) + 2kQ, (31a)

Q(x , t) =

(
0 q(x , t)

q∗(x , t) 0

)
(31b)

such that X,T satisfy the linear problems

Φx(x , t; k) = X(x , t; k)Φ(x , t; k), Φt(x , t; k) = T(x , t; k)Φ(x , t; k) (32)

if and only if Φxt = Φtx is identically satisfied provided q solves equation (30).
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Defocusing NLS: Lax pair and uniformization variable

As x → ±∞, the scattering problem has eigenvalues: ±iλ, with λ =
√

k2 − q2
o .

Consequently, the continuous spectrum R \ (−qo , qo) has a gap, and the
eigenfunctions have branching.

To remove the branching of λ, one introduces a two-sheeted Riemann surface by
gluing two copies of the complex k-plane cut along the semi-lines
(−∞,−qo ] ∪ [qo ,∞).
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Defocusing NLS: Lax pair and uniformization variable

Then define a uniformization variable [Faddeev & Takthajan, Springer 1984]:

z = k + λ ⇔ k =
1
2
(z + q2

o/z) , λ =
1
2
(z − q2

o/z) (33)

s.t. the branch cut on either sheet is mapped onto the real z axis, and sheet I/II is
mapped onto the upper/lower half-plane of the z-plane:
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A numerical IST: analysis
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First deformation: opening lenses

Define the function m1,d (z) =



M̃(z)P−1(ξ, z), z ∈ Ω1

M̃(z)U−1(ξ, z), z ∈ Ω2

M̃(z)L(ξ, z), z ∈ Ω3

M̃(z)M(ξ, z), z ∈ Ω4

M̃(z), elsewhere

which satisfies the jump condition:

m1,d+ (z) = m1,d− (z)Gm1,d (ξ, z), Gm1,d (ξ, z) =



P(ξ, z), z ∈ Σ1

U(ξ, z), z ∈ Σ2

L(ξ, z), z ∈ Σ3

M(ξ, z), z ∈ Σ4

D(z), z ∈ (−∞, 0)

(34)

Figure: Opening lenses
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where the matrices:

M(ξ, z) =

(
1 −ρ∗(z)e−2t iθ(ξ,z)

0 1

)
, P(ξ, z) =

(
1 0

ρ(z)e2t iθ(ξ,z) 1

)
(35a)

L(ξ, z) =

(
1 0

ρ(z)
1−|ρ(z)|2 e

2t iθ(ξ,z) 1

)
, U(ξ, z) =

(
1 − ρ∗(z)

1−|ρ(z)|2 e
−2t iθ(ξ,z)

0 1

)
(35b)

D(z) =

(
1 − |ρ(z)|2 0

0 1
1−|ρ(z)|2 .

)
(35c)

are such that

GM(ξ, z) = M(ξ, z)P(ξ, z) ≡ L(ξ, z)D(z)U(ξ, z). (36)
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For large t, the jumps across Σj , for j = 1, · · · , 4 are exponentially close to the identity matrix,
as the exponents e±2tiθ(ξ,z) decay rapidly (because the segments Σj fall into regions where
Re(iθ(ξ, z)) has fixed and "desired" sign). This leads to increased efficiency in the numerical
scheme, since fewer terms need to be computed. However, this does not happen with the jump

matrix D(z) =

(
1 − |ρ(z)|2 0

0 1
1−|ρ(z)|2

)
across (−∞, 0).

We introduce the function ∆(z):

∆(z) =

(
δ11(z) 0

0 1/δ11(z)

)
, δ11(z) = exp

(
1

2πi

∫ 0

−∞

log
(
1 − |ρ(s)|2

)
s − z

ds

)
, (37)

which satisfies:
∆+(z) = ∆−(z)D(z), z ∈ (−∞, 0). (38)

Then, we define the function
m2,d (z) = m1,d (z) ∆

−1(z). (39)
It is then straightforward to check that m2,d is analytic on (−∞, 0).

Figure: Left panel: sign chart of Re(iθ(ξ, z)) when 0 < ξ < 1. Right panel: sign chart of Re(iθ(ξ, z))
when −1 < ξ < 0.
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Second deformation: remove the jump D(z)

Then, the function m2,d satisfies the following RHP.

RHP for m2,d : Find a 2 × 2 matrix-valued function m2,d such that:

1. m2,d (z) is analytic in C \ Σ, where Σ =
⋃4

j=1 Σj

2. m2,d (z) satisfies the jump relation across Σ

m2,d+ (z) = m2,d− (z)Gm2,d (ξ, z), Gm2,d (ξ, z) =



∆(z)P(ξ, z)∆−1(z), z ∈ Σ1

∆(z)U(ξ, z)∆−1(z), z ∈ Σ2

∆(z)L(ξ, z)∆−1(z), z ∈ Σ3

∆(z)M(ξ, z)∆−1(z), z ∈ Σ4

(40)

3. m2,d (z) = I2 +O(1/z), z → ∞
4. The non-tangential limits of m2,d (z) as z → 0 from C± exist, and

m2,d+(0) = m2,d−(0) =: m2,d (0).
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