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Motivation

m Proposed by Donald Newman

Concept

Consider a graph whose nodes are colored in one of two colors:
black or white. A white node is called integrated if it has at least
as many black neighbors as white neighbors, and similarly for a
black node. A coloring of a graph is said to be integrated if each
of the nodes are integrated.
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Motivation

Question

Do all simple graphs admit an integrated coloring?

Short answer: YES!

Definition

A simple graph is a graph G = (V, E), where V is the set of
vertices in G and E is the set of edges in G, such that G does not
contain loops or multiple edges between any two vertices
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Integrated Coloring

An edge is considered balanced if it is incident to both black and

white vertices

Unbalanced Balanced Unbalanced

®e—e e O O—™7™©O0
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Integrated Coloring

If a graph G is colored in such a way it yields the maximum
number of balanced edges, then G is integrated.

Proof.

Assume there is a coloring of some graph G with the maximum
number of balanced edges and is not integrated. WLOG, there is a
white node that is adjacent to more white vertices than black
vertices. If we switch the color of this vertex from white to black,
we increase the number of balanced edges. This contradicts the
assumption that the coloring contains the maximum number of
balanced edges. O
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Mixing Number

Definition

For each vertex v € V, the mixing number of v, or mix(v), is
the number of opposite colored vertices adjacent to v. In other
words, the total number of balanced edges incident to v.

Theorem
If a graph is integrated, then for all v € V, mix(v) > Sdeg(v)
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Mixing Number

For every graph G,

> mix(v) = 2(mix(G))




Mixing Number

Using previous Lemma we have,

2(mix(G)) =Y mix(v)

> %deg(V)
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Converse of Affirmative Action Problem

Question

If a coloring of G is integrated, then does it contain the maximum
possible number of balanced edges?

Answer: Nol
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Converse of Affirmative Action Problem

m Consider square circuit graphs:
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Integrated Mixing Spectrum

The integrated mixing spectrum of a graph G, or ims(G), is the
set of all possible mixing numbers across all integrated colorings

m Let ims™(G) and ims™(G) be the minimum and maximum,
respectively, of ims(G).
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Max Cut Problem

How do you bound ims(G)?

m Answer: Using the Max Cut Problem
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Max Cut Problem

Given a graph G, partition, or cut, V into two sets S and V — S
that has most possible edges connecting S to V — S

m WLOG, consider the sets S and V — S to be the set of black
and white vertices, respectively.

m By the previous proof, we know mix(v) > 2deg(v) for all
v eV, soims (G) > 3I|E|

m Max cut = ims™(G)
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Complete Graphs

Definition

A complete graph, K, is a graph with n vertices that has every
vertex adjacent to every other vertex.

Examples
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The number of integrated colorings on Kj is trivial. We start with
coloring one node black or white and then make the other node
the unused color. We can do this twice:

o—@ ® O
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Finding ic(K3) is a little more complicated, but it is still easy to
find all 6 possible integrated colorings.
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K4, despite having more vertices than K3, has the same number of
integrated colorings.
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m Is there a way to count the number of integrated colorings a
complete graph has for any K,,?
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m Is there a way to count the number of integrated colorings a
complete graph has for any K,,?

m Yes, but we have to consider the parity of the number of
vertices in K.
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Complete Graph Theorems

Theorem: ic(Kap)

The total number of integrated colorings on Kj, is (2n")

Theorem: ic(Kap—1)

2n—1)

The total number of integrated colorings on K5,_1 is 2( i
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Proof for K5,

Let x be the number of black vertices in K3, and y be the number
of white vertices in K>,

Then x + y = 2n. Suppose x # y. Without loss of generality, say
X > n so that then y < n. This means a black node would have at
least n black nodes adjacent to it and no more than n — 1 white
nodes adjacent to it. This would mean K>, is not an integrated
coloring so we need x =y = n.

From the 2n vertices, we make n of them black and the rest white.
There is (2:) ways to pick n vertices from 2n. Since the remaining

vertices are white, there (2n") integrated colorings over Ka,.
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Proof Kgn_l

Let x be the number of black nodes in K>,_1 and y be the number
of white nodes in Ko,_1

Then x 4+ y = 2n — 1. So one color has 1 more node than the
other. Without loss of generality, suppose y = x + 1 so that then
X+y=2x+1=2n—-1.
Then2x=2n—2andsox=n—1and y =n.

So out of the 2n — 1 vertices, we need n vertices 1 color and the
other n — 1 vertices the other color. There are (2";1) ways of
picking the n vertices from n — 1. However, there are two options
for the color with n vertices so we have 2(*" 1) integrated
colorings over Kp,_1.
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Integrated Mixing Spectrum on K,

m imst(Kan) = ims~(Ka,) = n?. Think number of choices for
endpoints.

m imsT(Kap—1) = ims~ (Kan—1) = n(n — 1). Again, number of
choices for endpoints.
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Complete Bipartite Graphs

Definition

A complete bipartite graph, denoted by Ky, », is defined as the
graph whose set of vertices can be partitioned into two disjoint
sets, L and R, where |L| = m and |R| = n, and an edge (u, v)
exists in the graph if and only if u € L and v € R, or vise versa.

Example: K3
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Motivating Example

How many integrated colorings can we form from the complete
bipartite graph K3>? Let us balance the vertices one by one until
all of the vertices are balanced.
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Integrating K32

Vertex 1 would not be considered integrated if it remains the color
black, as it is incident to two other black vertices. To satisfy the
definition of integration, we must change the color of vertex 1 to
white, thus creating a white vertex incident to two black vertices.
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Integrating K3, cont.

We will now consider vertex 2. Like vertex 1, it is a black vertex
incident to 2 other black vertices, which means that it is not
integrated. To achieve integration of vertex 2, we must change
vertex 2's color to white. This is acceptable as vertex 2 remains
incident only to the 2 black vertices.
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Integrating K3, cont.

We apply the same logic to vertex 3 and change the coloring of
vertex 3 from black to white to ensure integration.

Motivating Question

We observe that all of the vertices in each disjoint set are of the
same coloring in this configuration. Given this observation, is there
another way to color K3 that still satisfies the properties of
integrated coloring?
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Motivating Question

The anti-coloring of an integrated coloring, where the colors of all
of the vertices are swapped, is still integrated. So, switching the
colors of the top and bottom sets will still yield an integrated
coloring.

Notice: If we change the color of even one vertex so that it no
longer matches the color of the other vertices in its set, whether on
the top or the bottom, the coloring will no longer be integrated.
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Integrated Colorings for K3

There are two possible integrated colorings for K3 ».

I'C(K3’2) =2
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Integrated Mixing Spectrum of K3,

The integrated mixing spectrum for K3, is
ims(K32) = {6}

because both integrated colorings of K3 yield a configuration in
which all of the edges are balanced.
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Another Motivating Example

Now we will work with a complete bipartite graph with 2 disjoint
sets of even cardinality instead of one even and one odd and
observe the changes to the number of integrated colorings and the
integrated mixing spectrum.

Example: Kp 4
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Integrated Colorings of Kg 4

Let us begin with the simplest coloring. We will apply the same
logic we derived from the previous complete bipartite graph
coloring. Here are two possible integrated colorings, all the vertices
at the top are one color (white or black) and the bottom vertices
are colored in the opposite color.

Xavier University of Louisiana
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Integrated Colorings of Kg 4 cont.

The second possible option for integrated coloring is to assign
colors to vertices such that the coloring is evenly split, exactly half
of them black, and exactly half are white. And this is done for the
top and the bottom vertices.

This distribution ensures that each of the vertices are incident to a
sufficient number of vertices of the opposite color to satisfy
integration properties.
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Integrated Colorings of Kg 4 cont.

Some examples of that coloring

Note: There are other possible ways to split the colorings of the
vertices
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Motivating Question

Calculate the number of possible integrated colorings

To calculate the number of colorings when exactly half of the top
and bottom vertices are a different color, we use combinations.

)
()

For the top vertices:

For the bottom vertices:

Thus

=2+ (%) (%)
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Integrated Mixing Spectrum of Kg 4

The integrated mixing spectrum is,

ims(Ke a) = {24,12}.
Where the 24 corresponds to Option 1, where the top and bottom
vertices are opposite colors, and the 12 corresponds to Option 2,

where each half of the top and bottom vertices are evenly split
between the two colors.
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Formula for Integrated Colorings and Integrating Mixing
Spectrum of Complete Bipartite Graphs

We want to consider the complete bipartite graph Kp, ,, where L
and R is the disjoint bipartition of V. Let r represent the number
vertices in L colored black, and so m — r represents the number of
vertices in L colored white.

Assume, WLOG, r > m—r
mifr#m—rand0<r < m, there there is an imbalance:

m Vertices in the other disjoint set would be connected to more
black than white vertices, so they will fail the condition for
integration.

m All of the vertices in the set n would need to be colored white.
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Formula for Integrated Colorings and Integrating Mixing
Spectrum of Complete Bipartite Graphs cont.

m If any of the vertices in R are white, then the white vertices in
L will have all white neighbors, thus violating the condition for
integration.

Conclusion: To have an integrated coloring in Ky, 5, one of the
following must be true

mr=0
mm=r

Br=m-—r=2r=m
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We can create a piecewise formula for ic(Kp,. )

2 if either m or n is odd

] Km n) — .
ie(Km.n) 2+ (m"/’z) (n’/’2) if m,n are both even

We can also create a piecewise function for ims(Kp_p)

ims(Kom 1) {mn} if either m or n is odd
ims(Km.n) =
’ {mn/2, mn} if m,n are both even
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Path Graphs

Definition
The path graph, P,, is a graph with n vertices connected in a
single line by n — 1 edges.

Examples

oo o6 6 6 o6 0 0 °
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Integrated Colorings of P,

For P, to be integrated, you must avoid any substring of 3
consecutive White/Black nodes.

m This can also be thought of as avoiding 2 consecutive
Unbalanced Edges (U).

O o—eoO

® O
® @ e O 0
P>
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ic(P,) Recurrence relation

Let ic(P,) denote the number of integrated colorings of P,. It
turns out the ic(P,) satisfies the recurrence relation for n > 4:

ic(P,) = ic(Pp-1) + ic(Pp—2)

Base Cases:
mic(P) =2
mic(Pp) =2
m ic(P3) =2
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Fibonacci Connection

The integrated Coloring of path graphs follow a Fibonacci like
recurrence.

iC(Pn) = 2Fn_1

m where F, is the Fibonacci Sequence and n > 2.

n|ic(Pn) | Fn | 2Fp—1
4 4 3 4
5 6 5 6
6 10 8 10
7 16 13 16
8 26 21 26

Charles Burnette, Broden Caton, Olivia Coward, Julian Davis, Austin Teter Xavier University of Louisiana

Generalizing the Affirmative Action Problem: Mixing Numbers and Integrated Colorings of Graphs



ims(P,)

Every integrated coloring of P,, must have a mixing number of at
least {”Elw and at most n— 1.

Therefore,

ims=(P,) = [251] imst(P,)=n—1
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Probability Distribution of mix(C)

Let C be a random integrated coloring of P,, and k be an integer
k—1

between ["51] and n— 1. Then, Pr(mix(C) = k) = %

Proof.

Model C as a string of length of n — 1 consisting of k Bs and
n— 1 — k Us with the following constraints:

m cannot have 2 consecutive Us;
® must begin and end with B.

This amounts to counting the number of distributions of n — k
nonempty blocks of Bs separated by the Us. A "stars and bars”
argument shows there (%) such strings. O
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Probability Distribution pt.2

Let C be a random integrated coloring of P,, and k be an integer

k—1
between f"%q and n—1. Then, Pr(mix(C) = k) = .2(1_2(/;;)1)

n—1

Zl 2(nf;i1) = ic(Py,)

k=["74]

This agrees with the well-known identity:

n—1 k—1
n—k-—1

k= |'n51
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Generating Function

o0

The generating function, F(u,z) = Z Z u™(©) 2" where
n=1 CIC(Pn)

IC(G) denotes the set of all integrated colorings of G,

satisfies the equation:

F(u,z) = 2z + uzF (u, z) 4+ uz*(F(u, z) — 22)

Solving for F(u, z) yields the bi-variate rational generating function

B 2z — 2uz3
01— uz — uz?

F(u,z)
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Cycle Graphs

Definition
The cycle graph, C,, is the path graph P, with an additional edge
connecting vertex 1 and vertex n.

The integrated colorings of C,, can be modeled in the same way as
they were for P,, except now the strings

m cannot both begin and end with U (due to cyclicity);

m need an even number of Bs (otherwise the ending color of the
cycle would not match the starting color).

Here, the recurrence relation for ic(Cp,) is, for n > 7,
ic(Cp) = ic(Ch—2) 4 2ic(Cp—3) + ic(Cp—a),

with ic(G3) = 2, ic(Cy) = ic(Cs) = 6, and ic(Ce) = 10.
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ims(C,)

Every integrated coloring of C,, must have an even mixing number
of at least 2[7] and at most 2|5 ].

Therefore,

ims=(Ca) =2 [2] ims*(Cy) =2 5]

ims(Cy) = {2k : k € Z, [2] < k < | 2]}
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Probability Distribution

Let C be a random integrated coloring of C,, and k be an integer
2k—1 2k—1
between [ 7] and [5|. Then, Pr(mix(C) = 2k) = 2, 2k?:22(’)"2k‘1

Proof

Model C as before with the aforementioned constraints. Then the
string can either be bookended by B or begin and end with
different letters. In the first case, the string comprises of n — 2k +1
nonempty runs of Bs separated by the Us. A standard "stars and
bars” argument shows that there are (,27’5,1) such strings. In the
second case, the string comprises of n — 2k nonempty runs of Bs

separated by the Us. There are (nz’;;il) such strings. O
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Generating Function

The generating function, F(u, z) Z Z ymix(C) zn
n=1 CelC(Cy)

satisfies the equation: F(u,z) =
222 4 60u% 23 +4uP 2 + uPZ2F(u, 2) +2uP 22 F (u, 2) + u?2*F (u, 2).

Solving for F(u, z) yields the bi-variate rational generating function

2u%7%(22° + 3z +1)
1—u?z2(2z+1)

F(u,z)=
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Limiting Distribution

m The rational generating functions for ic(P,) and ic(Cp,)
suggest that mix(C) satisfies a Central Limit Theorem for
both classes of graphs.

m In particular, if u, and o, are the associated expected values
and standard deviations of mix(C) over uniform random
path/cycle graphs of order n, then

H _ X
jim pr | MX(C) = X} _ 1/ 12 gy,
n—00 on 2T J 0o

m Asymptotic expansions of u, and o, along with the
convergence rate of the above limit law, can be ascertained by
singularity analysis on the generating functions.
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